• python库skimage 绘制直方图;绘制累计直方图;实现直方图匹配(histogram matching)


    绘制直方图

    from skimage import exposure
    # 绘制彩色图像的c通道的直方图
    img_hist, bins = exposure.histogram(img[..., c], source_range='dtype')
    # 以第c行第i列的形式绘制归一化直方图
    axes[c, i].plot(bins, img_hist / img_hist.max())
    

    绘制累积直方图

    from skimage import exposure
    img_cdf, bins = exposure.cumulative_distribution(img[..., c])
    axes[c, i].plot(bins, img_cdf)
    

    直方图匹配(histogram matching)

    含义:使源图像的累积直方图和目标图像一致

    from skimage.exposure import match_histograms
    # 参数1:源图像;参数2:目标图像;参数3:多通道匹配
    matched = match_histograms(image, reference, multichannel=True)
    

    实验:直方图匹配效果

    """
    ==================
    Histogram matching
    ==================
    
    This example demonstrates the feature of histogram matching. It manipulates the
    pixels of an input image so that its histogram matches the histogram of the
    reference image. If the images have multiple channels, the matching is done
    independently for each channel, as long as the number of channels is equal in
    the input image and the reference.2
    
    Histogram matching can be used as a lightweight normalisation for image
    processing, such as feature matching, especially in circumstances where the
    images have been taken from different sources or in different conditions (i.e.
    lighting).
    """
    
    import matplotlib.pyplot as plt
    
    from skimage import data
    from skimage import exposure
    from skimage.exposure import match_histograms
    
    reference = data.coffee()
    image = data.chelsea()
    
    matched = match_histograms(image, reference, multichannel=True)
    
    fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3),
                                        sharex=True, sharey=True)
    for aa in (ax1, ax2, ax3):
        aa.set_axis_off()
    
    ax1.imshow(image)
    ax1.set_title('Source')
    ax2.imshow(reference)
    ax2.set_title('Reference')
    ax3.imshow(matched)
    ax3.set_title('Matched')
    
    plt.tight_layout()
    plt.show()
    
    
    ######################################################################
    # To illustrate the effect of the histogram matching, we plot for each
    # RGB channel, the histogram and the cumulative histogram. Clearly,
    # the matched image has the same cumulative histogram as the reference
    # image for each channel.
    
    fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(8, 8))
    
    
    for i, img in enumerate((image, reference, matched)):
        for c, c_color in enumerate(('red', 'green', 'blue')):
            img_hist, bins = exposure.histogram(img[..., c], source_range='dtype')
            axes[c, i].plot(bins, img_hist / img_hist.max())
            img_cdf, bins = exposure.cumulative_distribution(img[..., c])
            axes[c, i].plot(bins, img_cdf)
            axes[c, 0].set_ylabel(c_color)
    
    axes[0, 0].set_title('Source')
    axes[0, 1].set_title('Reference')
    axes[0, 2].set_title('Matched')
    
    plt.tight_layout()
    plt.show()
    

    实验输出

    左图:源图像;中图:目标图像(参考图像);右图:源图直方图匹配后图像
    直方图匹配操作含义展示:可以看到匹配后,源图像和目标图像的累积直方图趋于一致

  • 相关阅读:
    如何基于GOCW,创建一个实时视频程序
    对OpenCV中“旋转”的思考和实验
    为基于OpenCV的图像处理程序编写界面—关于QTMFCCSharp的选择以及GOCW的介绍
    《学习OpenCV3》第6章课后习题
    《学习OpenCV3》第14章课后习题
    如何识别出轮廓准确的长和宽
    answerOpenCV轮廓类问题解析
    尝试解决cifar10问题
    在训练的过程中降低学习率
    kaggle竞赛_mnist_10%
  • 原文地址:https://www.cnblogs.com/wojianxin/p/12641405.html
Copyright © 2020-2023  润新知