• 如何识别出轮廓准确的长和宽


    问题来源:

    实际项目中,需要给出识别轮廓的长度和宽度。
    初步分析:
    image description
    轮廓分析的例程为:
    int main( int argc, char** argv )
    {
        //read the image
        Mat img = imread("e:/sandbox/leaf.jpg");
        Mat bw;
        bool dRet;
        //resize
        pyrDown(img,img);
        pyrDown(img,img);

        cvtColor(img, bw, COLOR_BGR2GRAY);
        //morphology operation  
        threshold(bw, bw, 150, 255, CV_THRESH_BINARY);
        //bitwise_not(bw,bw);
        //find and draw contours
        vector<vector<Point> > contours;
        vector<Vec4i> hierarchy;
        findContours(bw, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
        for (int i = 0;i<contours.size();i++)
        {
            RotatedRect minRect = minAreaRect( Mat(contours[i]) );
            Point2f rect_points[4];
            minRect.points( rect_points ); 
            for( int j = 0; j < 4; j++ )
                line( img, rect_points[j], rect_points[(j+1)%4],Scalar(255,255,0),2);
        }
        imshow("img",img);
        waitKey();
        return 0;
    }

    得到结果:
    image description
     
     
    对于这样 的轮廓分析,标明出来的1和2明显是错误的。但是除了minAreaRect之外,已经没有更解近一步的方法。
    也尝试首先对轮廓进行凸包处理,再查找外接矩形,效果同样不好。
     
    解题思路:
    仍然要从现有的、稳定运行的代码里面找方法。目前OpenCV函数getOrientation能够通过PCA方法找到图像/轮廓的方向
    比如这样:
     
     
    在项目图片上能够得到这样结果:
    显然是更符合实际情况的,当然,叶柄这里产生了干扰,但那是另一个问题。
    获得主方向后,下一步就是如何获得准确的长和宽。PCA方法无法获得长宽,也尝试通过旋转矩阵的方法直接获得结果:
    ////以RotatedRect的方式返回结果
        //RotatedRect box;
        //box.center.x = pos.x;
        //box.center.y = pos.y;
        //box.size.width = flong;
        //box.size.height = fshort;
        //box.angle = (float)atan2( eigen_vecs[0].y, eigen_vecs[0].x)*180/3.1415926; //弧度转角度
     
        ////绘制rotateRect
        //Point2f rect_points[4];
        //box.points( rect_points ); 
        //for( int j = 0; j < 4; j++ )
        //    line( img, rect_points[j], rect_points[(j+1)%4],Scalar(0,0,255),2);
    但是需要注意的是,这里的pca获得的center并不是绝对的center,而且在中线两边,轮廓到中线的长度不一定一样。为了获得最精确的结果,就需要直接去求出每个边的长度,并且绘制出来。
    思路很简单,就是通过中线(及其中线的垂线)将原轮廓分为两个部分,分别求这两个部分的到中线的最大距离(加起来就是长,分开来就是位置)。
    求的长轴端点:
     
     
    求得到中线最远距离点(蓝色),这也就是到中线的距离。
     
     
     
     
    距离的计算很多时候只是点的循环。最后存在一个问题,那就是这样一个图像,已经知道p0-03的坐标,和两条轴线的斜率,如何绘制4个
    角点?
     
    实际上,这是一个数学问题,并且有解析解:
        //通过解析方法,获得最后结果 
        Point p[4]; 
        p[0].x = (k_long * _p[0].x   - k_short * _p[2].x  +  _p[2].y - _p[0].y)  / (k_long - k_short);
        p[0].y = (p[0].x - _p[0].x)*k_long + _p[0].y;
        p[1].x = (k_long * _p[0].x   - k_short * _p[3].x  +  _p[3].y - _p[0].y)  / (k_long - k_short);
        p[1].y = (p[1].x - _p[0].x)*k_long + _p[0].y;
        p[2].x = (k_long * _p[1].x   - k_short * _p[2].x  +  _p[2].y - _p[1].y)  / (k_long - k_short);
        p[2].y = (p[2].x - _p[1].x)*k_long + _p[1].y;
        p[3].x = (k_long * _p[1].x   - k_short * _p[3].x  +  _p[3].y - _p[1].y)  / (k_long - k_short);
        p[3].y = (p[3].x - _p[1].x)*k_long + _p[1].y;
     
    成功!!!
    得到最后结果,这正是我想要得到的。但是由于算法稳定性方面和效率的考虑,还需要进一步增强。
      
    p.s
    重新翻了一下minarearect

    cv::RotatedRect cv::minAreaRect( InputArray _points )
    {
        CV_INSTRUMENT_REGION()

        Mat hull;
        Point2f out[3];
        RotatedRect box;

        convexHull(_points, hull, true, true);

        if( hull.depth() != CV_32F )
        {
            Mat temp;
            hull.convertTo(temp, CV_32F);
            hull = temp;
        }

        int n = hull.checkVector(2);
        const Point2f* hpoints = hull.ptr<Point2f>();

        if( n > 2 )
        {
            rotatingCalipers( hpoints, n, CALIPERS_MINAREARECT, (float*)out );
            box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
            box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
            box.size.width = (float)std::sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
            box.size.height = (float)std::sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
            box.angle = (float)atan2( (double)out[1].y, (double)out[1].x );
        }
        else if( n == 2 )
        {
            box.center.x = (hpoints[0].x + hpoints[1].x)*0.5f;
            box.center.y = (hpoints[0].y + hpoints[1].y)*0.5f;
            double dx = hpoints[1].x - hpoints[0].x;
            double dy = hpoints[1].y - hpoints[0].y;
            box.size.width = (float)std::sqrt(dx*dx + dy*dy);
            box.size.height = 0;
            box.angle = (float)atan2( dy, dx );
        }
        else
        {
            if( n == 1 )
                box.center = hpoints[0];
        }

        box.angle = (float)(box.angle*180/CV_PI);
        return box;
    }
     
    那么,这个官方函数首先就把轮廓找了hull矩。这个当然对于很多问题都是好方法,很简单直观(我这里的方法就繁琐很多)。但是忽视了一个重要问题:hull变换后,会丢失信息。显然这就是结果不准确的原因。
     
    我也在answeropencv上进行了咨询,berak给出的comment是

    maybe:

    1. find principal axes of your shape (PCA)
    2. rotate to upright (warp)
    3. boundingRect() (image axis aligned)
    这个显然也不是很妥当,因为这个结果还需要rotate回去,这会很麻烦。
    感谢阅读至此,希望有所帮助。
     
    2018年8月29日19:43:01
    经过一段时间后反思这个项目,应该说这个算法有一定自创的元素在里面,但是由于这个问题比较小众,所以即使是在answeropencv上面,参与讨论的人也比较少,使得算法有很多不充分的地方在里面:最主要的问题就是在算法的后面部分,多次进行全轮廓循环,使得算法的效率降低。
    那么,有没有能够提速的方法了?还是之前做的一些数学的研究和在answeropencv上berak的comment提醒了我,注意看:
     
    这里,黑色的是原始的OpenCV的坐标系,红色的是新求出来的坐标系,你花了那么大功夫去算交点,实际上,不如将这个图像旋转为正,将外界矩形算出来,然后再反方向旋转回去。这样的话思路就很清楚了,但是需要花一点修改的时间。
    但是正是因为这里的思路比较清晰,所以代码写起来,比较流畅,很快我就得到了下面的结果:
     
    #include "stdafx.h"
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/imgproc.hpp"
    #include "opencv2/photo.hpp"
     
     
    using namespace std;
    using namespace cv;
    #define DEBUG FALSE
     
    //获得单个点经过旋转后所在精确坐标
    Point2f GetPointAfterRotate(Point2f inputpoint,Point2f center,double angle){
        Point2d preturn;
        preturn.x = (inputpoint.x - center.x)*cos(-angle) - (inputpoint.y - center.y)*sin(-angle)+center.x;
        preturn.y = (inputpoint.x - center.x)*sin(-angle) + (inputpoint.y - center.y)*cos(-angle)+center.y;
        return preturn;
    }
    Point GetPointAfterRotate(Point inputpoint,Point center,double angle){
        Point preturn;
        preturn.x = (inputpoint.x - center.x)*cos(-1*angle) - (inputpoint.y - center.y)*sin(-1*angle)+center.x;
        preturn.y = (inputpoint.x - center.x)*sin(-1*angle) + (inputpoint.y - center.y)*cos(-1*angle)+center.y;
        return preturn;
    }
     
    double getOrientation(vector<Point> &ptsPoint2fpos,Matimg)
    {
        //Construct a buffer used by the pca analysis
        Mat data_pts = Mat(pts.size(), 2, CV_64FC1);
        for (int i = 0; i < data_pts.rows; ++i)
        {
            data_pts.at<double>(i, 0) = pts[i].x;
            data_pts.at<double>(i, 1) = pts[i].y;
        }
     
        //Perform PCA analysis
        PCA pca_analysis(data_ptsMat(), CV_PCA_DATA_AS_ROW);
     
        //Store the position of the object
        pos = Point2f(pca_analysis.mean.at<double>(0, 0),
            pca_analysis.mean.at<double>(0, 1));
     
        //Store the eigenvalues and eigenvectors
        vector<Point2deigen_vecs(2);
        vector<doubleeigen_val(2);
        for (int i = 0; i < 2; ++i)
        {
            eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
                pca_analysis.eigenvectors.at<double>(i, 1));
     
            eigen_val[i] = pca_analysis.eigenvalues.at<double>(i,0);
        }
     
        // Draw the principal components
        //在轮廓/图像中点绘制小圆
        //circle(img, pos, 3, CV_RGB(255, 0, 255), 2);
        ////计算出直线,在主要方向上绘制直线
        //line(img, pos, pos + 0.02 * Point2f(eigen_vecs[0].x * eigen_val[0], eigen_vecs[0].y * eigen_val[0]) , CV_RGB(255, 255, 0));
        //line(img, pos, pos + 0.02 * Point2f(eigen_vecs[1].x * eigen_val[1], eigen_vecs[1].y * eigen_val[1]) , CV_RGB(0, 255, 255));
        return atan2(eigen_vecs[0].yeigen_vecs[0].x);
    }
     
    //程序主要部分
    int mainint argcchar** argv )
    {
        //读入图像,转换为灰度
        Mat img = imread("e:/sandbox/leaf.jpg");
        pyrDown(img,img);
        pyrDown(img,img);
     
        Mat bw;
        bool dRet;
        cvtColor(imgbwCOLOR_BGR2GRAY);
        //阈值处理
        threshold(bwbw, 150, 255, CV_THRESH_BINARY);
        //寻找轮廓
        vector<vector<Point> > contours;
        vector<Vec4ihierarchy;
        findContours(bwcontourshierarchyCV_RETR_LISTCV_CHAIN_APPROX_NONE);
     
        //轮廓分析,找到
        for (size_t i = 0; i < contours.size(); ++i)
        {
            //计算轮廓大小
            double area = contourArea(contours[i]);
            //去除过小或者过大的轮廓区域(科学计数法表示)
            if (area < 1e2 || 1e5 < areacontinue;
            //绘制轮廓
            drawContours(imgcontoursiCV_RGB(255, 0, 0), 2, 8, hierarchy, 0);
            //获得轮廓的角度
            Point2fpos = new Point2f();
            double dOrient =  getOrientation(contours[i], *pos,img);
            //转换轮廓,并获得极值
            for (size_t j = 0;j<contours[i].size();j++)
                contours[i][j] = GetPointAfterRotate(contours[i][j],(Point)*pos,dOrient);
            Rect rect = boundingRect(contours[i]);//轮廓最小外接矩形
            RotatedRect rotateRect = RotatedRect((Point2f)rect.tl(),Point2f(rect.br().x,rect.tl().y),(Point2f)rect.br());
            //将角度转换回去并绘图
            Point2f rect_points[4];
            rotateRect.pointsrect_points ); 
            for (size_t j = 0;j<4;j++)
                rect_points[j] = GetPointAfterRotate((Point)rect_points[j],(Point)*pos,-dOrient);
            forsize_t j = 0; j < 4; j++ )
                lineimgrect_points[j], rect_points[(j+1)%4],Scalar(255,255,0),2);
            //得出结果    
            char cbuf[255];
            double fshort = std::min(rect.width,rect.height);
            double flong  = std::max(rect.width,rect.height);
            sprintf_s(cbuf,"第%d个轮廓,长度%.2f,宽度%.2f像素 ",i,flong,fshort);
        }
        return 0;
    }
     
     
    这段代码中值得一提的是
    Point GetPointAfterRotate(Point inputpoint,Point center,double angle){
        Point preturn;
        preturn.x = (inputpoint.x - center.x)*cos(-1*angle) - (inputpoint.y - center.y)*sin(-1*angle)+center.x;
        preturn.y = (inputpoint.x - center.x)*sin(-1*angle) + (inputpoint.y - center.y)*cos(-1*angle)+center.y;
        return preturn;
    }
    这个函数是直接计算出某一个点在旋转后位置,采用的是数学方法推到,应该算自己创的函数。很多时候,我们并不需要旋转整个图像,而只是要获得图像旋转以后的位置。
     
    反思小结:应该说当时answerOpenCV上就给出了正确的结果提示,但是由于那时我钻在自己的算法里面,没能够接受新的想法;过去一段时间后回顾,才发现了更好的解决方法。
    但是走弯路并不可怕,只有不断、持续地思考,尽可能将现有的解决方法优化,才可能在面对新的问题的时候有更多的手段、更容易提出创造出“方便书写、效果显著”的算法。
    此外,基础能力非常重要,如果基础不牢,在创建新算法 的时候会遇到更多的困难,毕竟:基础不牢、地动山摇。
    感谢阅读至此、希望有所帮助。
     





    附件列表

  • 相关阅读:
    windows下安装redis
    十五oracle 触发器
    Flask 学习 六 大型程序结构
    Flask 学习 五 电子邮件
    Flask 学习 四 数据库
    Flask学习 三 web表单
    Flask学习 二 模板
    Flask学习 一 基本结构
    Python操作Redis
    Python操作MySQL
  • 原文地址:https://www.cnblogs.com/jsxyhelu/p/9345590.html
Copyright © 2020-2023  润新知