• JDK(十)JDK1.7&1.8源码对比分析【集合】ConcurrentHashMap


    前言

    JDK1.7&1.8源码对比分析【集合】HashMap中我们对比分析了JDK1.7和1.8版本的HashMap源码,趁热打铁,这篇文章就来看看JDK1.7和1.8版本的ConcurrentHashMap有哪些区别。

    目录

    一、对比分析

    1. 1.7版本

    2. 1.8版本

    一、对比分析

    1. 1.7版本

    先来看看 1.7 的实现,下面是他的结构图:

    如上图所示,是由 Segment 数组、HashEntry 组成,和 HashMap 一样,仍然是数组 + 链表

    它的核心成员变量:

    /**
     * The segments, each of which is a specialized hash table.
     * Segment 数组,存放数据时首先需要定位到具体的 Segment 中
     */
    final Segment<K,V>[] segments;
    
    transient Set<K> keySet;
    transient Set<Map.Entry<K,V>> entrySet;

    Segment 是 ConcurrentHashMap 的一个内部类,主要的组成如下:

    static final class Segment<K,V> extends ReentrantLock implements Serializable {
        
        private static final long serialVersionUID = 2249069246763182397L;
    
        /**
         * The maximum number of times to tryLock in a prescan before
         * possibly blocking on acquire in preparation for a locked
         * segment operation. On multiprocessors, using a bounded
         * number of retries maintains cache acquired while locating
         * nodes.
         */
        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
    
        /**
         * The per-segment table. Elements are accessed via
         * entryAt/setEntryAt providing volatile semantics.
         * 和 HashMap 中的 HashEntry 作用一样,真正存放数据的桶
         */
        transient volatile HashEntry<K,V>[] table;
    
        /**
         * The number of elements. Accessed only either within locks
         * or among other volatile reads that maintain visibility.
         */
        transient int count;
    
        /**
         * The total number of mutative operations in this segment.
         * Even though this may overflows 32 bits, it provides
         * sufficient accuracy for stability checks in CHM isEmpty()
         * and size() methods.  Accessed only either within locks or
         * among other volatile reads that maintain visibility.
         */
        transient int modCount;
    
        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always <tt>(int)(capacity *
         * loadFactor)</tt>.)
         */
        transient int threshold;
    
        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;
    }

    看看其中 HashEntry 的组成:

    /**
     * ConcurrentHashMap list entry. Note that this is never exported
     * out as a user-visible Map.Entry.
     */
    static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
    
        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
    }

    和 HashMap 非常类似,唯一的区别就是其中的核心数据如 value ,以及链表都是 volatile 修饰的,保证了获取时的可见性。

    原理上来说:ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。

    下面也来看看核心的put、get方法。

    put方法

    @SuppressWarnings("unchecked")
    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }
    
    
    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        HashEntry<K,V> node = tryLock() ? null :
            scanAndLockForPut(key, hash, value);
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                else {
                    if (node != null)
                        node.setNext(first);
                    else
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node);
                    else
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }

    虽然 HashEntry 中的 value 是用 volatile 关键词修饰的,但是并不能保证并发的原子性,所以 put 操作时仍然需要加锁处理。

    首先第一步的时候会尝试获取锁,如果获取失败肯定就有其他线程存在竞争,则利用scanAndLockForPut()自旋获取锁。

    private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
        HashEntry<K,V> first = entryForHash(this, hash);
        HashEntry<K,V> e = first;
        HashEntry<K,V> node = null;
        int retries = -1; // negative while locating node
        while (!tryLock()) {    // 尝试自旋获取锁
            HashEntry<K,V> f; // to recheck first below
            if (retries < 0) {
                if (e == null) {
                    if (node == null) // speculatively create node
                        node = new HashEntry<K,V>(hash, key, value, null);
                    retries = 0;
                }
                else if (key.equals(e.key))
                    retries = 0;
                else
                    e = e.next;
            }
            else if (++retries > MAX_SCAN_RETRIES) {
                // 如果重试的次数达到了 MAX_SCAN_RETRIES 则改为阻塞锁获取,保证能获取成功
                lock();
                break;
            }
            else if ((retries & 1) == 0 &&
                     (f = entryForHash(this, hash)) != first) {
                e = first = f; // re-traverse if entry changed
                retries = -1;
            }
        }
        return node;
    }

    再看看put的流程:

    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        HashEntry<K,V> node = tryLock() ? null :
            // 1. 将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry
            scanAndLockForPut(key, hash, value);
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    K k;
                    // 2. 遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                // 3. 不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容
                else {
                    if (node != null)
                        node.setNext(first);
                    else
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node);
                    else
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            // 4. 最后会解除在 1 中所获取当前 Segment 的锁
            unlock();
        }
        return oldValue;
    }

    get方法

    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

    get 逻辑比较简单:

    只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。

    由于 HashEntry 中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值。

    ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁

    2. 1.8版本

    1.7 已经解决了并发问题,并且能支持 N 个 Segment 这么多次数的并发,但依然存在 HashMap 在 1.7 版本中的问题。那就是查询遍历链表效率太低。

    因此 1.8 做了一些数据结构上的调整。首先来看下底层的组成结构:

    看起来是不是和 1.8 HashMap 结构类似?

    其中抛弃了原有的 Segment 分段锁,而采用了CAS + synchronized来保证并发安全性。

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;
    
        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }
    
        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }
    
        public final boolean equals(Object o) {
            Object k, v, u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == (u = val) || v.equals(u)));
        }
    
        /**
         * Virtualized support for map.get(); overridden in subclasses.
         */
        Node<K,V> find(int h, Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &&
                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }

    也将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的。其中的val、next都用了 volatile 修饰,保证了可见性。

    put方法

    重点来看看 put 函数:

    public V put(K key, V value) {
        return putVal(key, value, false);
    }
    
    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        // 根据 key 计算出 hashcode
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            // 判断是否需要进行初始化
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            // f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            // 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {// 如果都不满足,则利用 synchronized 锁写入数据
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    // 如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

    get方法

    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            // 根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            // 如果是红黑树那就按照树的方式获取值
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            // 都不满足那就按照链表的方式遍历获取值
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

    1.8 在 1.7 的数据结构上做了大的改动,采用红黑树之后可以保证查询效率(O(logn)),甚至取消了 ReentrantLock 改为了 synchronized,这样可以看出在新版的 JDK 中对 synchronized 优化是很到位的。

  • 相关阅读:
    Spring框架(二)
    Spring概况(一)
    唉 规整规整 进阶目录
    网络编程 -- RPC实现原理 -- 目录
    基础大杂烩 -- 目录
    艺多不压身 -- 目录
    延伸 -- 分类 -- 目录
    Eclipse 快捷键
    全局
    深入浅出MySQL++数据库开发、优化与管理维护+第2版+唐汉明 -- 存储引擎
  • 原文地址:https://www.cnblogs.com/warehouse/p/9420217.html
Copyright © 2020-2023  润新知