• 在线|二轮辅导[06][三角函数+解三角形02]


    视频地址

    百度云盘地址:

    高三文科数学第六次录课视频的百度云盘地址:链接:https://pan.baidu.com/s/1ocxs3wjW2RN0jp_CvcxUCA
    提取码:10us

    使用方法:下载观看,能保证高清清晰度,针对百度网盘限速,请使用PanDownload软件下载,该软件的下载地址:https://www.lanzous.com/i8ua9na;

    思维导图

    典例剖析

    例1求值(cfrac{1+cos20^{circ}}{2sin20^{circ}}-sin10^{circ}(cfrac{1}{tan5^{circ}}-tan5^{circ}))

    分析:原式(=cfrac{2cos^210^{circ}}{2cdot 2sin10^{circ}cos10^{circ}}-sin10^{circ}(cfrac{cos5^{circ}}{sin5^{circ}}-cfrac{sin5^{circ}}{cos5^{circ}}))

    (=cfrac{cos10^{circ}}{2sin10^{circ}}-sin10^{circ}(cfrac{cos^25^{circ}-sin^25^{circ}}{sin5^{circ}cos5^{circ}}))

    (=cfrac{cos10^{circ}}{2sin10^{circ}}-sin10^{circ}cfrac{2cos10^{circ}}{2sin5^{circ}cos5^{circ}})

    (=cfrac{cos10^{circ}}{2sin10^{circ}}-2cos10^{circ})

    (==cfrac{cos10^{circ}}{2sin10^{circ}}-cfrac{2cos10^{circ}cdot 2sin10^{circ}}{2sin10^{circ}})

    (=cfrac{cos10^{circ}-2sin20^{circ}}{2sin10^{circ}})

    (=cfrac{cos10^{circ}-2sin(30^{circ}-10^{circ})}{2sin10^{circ}})

    (=cfrac{cos10^{circ}-cos10^{circ}+2cdot cfrac{sqrt{3}}{2}sin10^{circ}}{2sin10^{circ}})

    (=cfrac{sqrt{3}}{2})

    例2求值(cfrac{cos10^{circ}-sqrt{3}cos(-100^{circ})}{sqrt{1-sin10^{circ}}})

    分析:原式(=cfrac{cos10^{circ}-sqrt{3}cos(100^{circ})}{sqrt{1-sin10^{circ}}})

    (=cfrac{cos10^{circ}+sqrt{3}sin10^{circ}}{sqrt{1-sin10^{circ}}})

    (=cfrac{cos10^{circ}+sqrt{3}sin10^{circ}}{sqrt{(cos5^{circ}-sin5^{circ})^2}})

    (=cfrac{cos10^{circ}+sqrt{3}sin10^{circ}}{(cos5^{circ}-sin5^{circ})^2})

    (=cfrac{2sin(10^{circ}+30^{circ})}{-sqrt{2}sin(5^{circ}-45^{circ})})

    (=cfrac{2sin40^{circ}}{sqrt{2}sin40^{circ}}=sqrt{2})

    例3化简求值(cfrac{cos40^{circ}}{cos25^{circ}cdot sqrt{1-sin40^{circ}}})

    分析:原式(=cfrac{cos40^{circ}}{cos25^{circ}cdot sqrt{(sin20^{circ}-cos20^{circ})^2}})

    (=cfrac{cos40^{circ}}{cos25^{circ}cdot |sin20^{circ}-cos20^{circ}|})

    (=cfrac{cos^220^{circ}-sin^220^{circ}}{cos25^{circ}(cos20^{circ}-sin20^{circ})})

    (=cfrac{cos20^{circ}+sin20^{circ}}{cos25^{circ}})

    (=cfrac{sqrt{2}sin(20^{circ}+45^{circ})}{cos25^{circ}})

    (=cfrac{sqrt{2}sin65^{circ}}{cos25^{circ}}=sqrt{2}).

    例4化简求值(cfrac{sqrt{3}tan12^{circ}-3}{(4cos^212^{circ}-2)sin12^{circ}})

    分析:原式=(cfrac{sqrt{3}cfrac{sin12^{circ}}{cos12^{circ}}-3cfrac{cos12^{circ}}{cos12^{circ}}}{2(2cos^212^{circ}-1)sin12^{circ}})

    (=cfrac{sqrt{3}cdot cfrac{sin12^{circ}-sqrt{3}cos12^{circ}}{cos12^{circ}}}{2cos24^{circ}sin12^{circ}})

    (=cfrac{sqrt{3}cdot 2sin(12^{circ}-60^{circ})}{2cos24^{circ}sin12^{circ}cos12^{circ}})

    (=cfrac{2sqrt{3}sin(-48^{circ})}{sin24^{circ}cos24^{circ}}=-4sqrt{3})

    练-1化简求值(cfrac{sqrt{3}-tan12^{circ}}{(2cos^212^{circ}-1)sin12^{circ}}=8)

    练-2化简求值(sin50^{circ}(1+sqrt{3}tan10^{circ})=1)

    例5函数(f(x)=2cos(omega x+phi)(omega eq 0))对任意(x)都有(f(cfrac{pi}{4}+x)=f(cfrac{pi}{4}-x))成立,则(f(cfrac{pi}{4}))的值为【】

    $A、2或0$ $B、-2或2$ $C、0$ $D、-2或0$

    分析:由任意(x)都有(f(cfrac{pi}{4}+x)=f(cfrac{pi}{4}-x))成立,可知(x=cfrac{pi}{4})为函数的一条对称轴,

    而正弦型或余弦型函数在对称轴处必然会取到最值,故(f(cfrac{pi}{4})=pm 2),选B。

    解后反思:此题目如果不注意函数的性质,往往会想到求(omega)(phi),这样思路就跑偏了。

    例6【2018云南玉溪一模】函数(f(x)=sqrt{3}sin2x+2cos^2x)的一条对称轴为直线【】

    $A、x=cfrac{pi}{12}$ $B、x=cfrac{pi}{6}$ $C、x=cfrac{pi}{3}$ $D、x=cfrac{pi}{2}$

    分析:(f(x)=2sin(2x+cfrac{pi}{6})+1)

    法1:比较繁琐,令(2x+cfrac{pi}{6}=kpi+cfrac{pi}{2})(kin Z),则(x=cfrac{kpi}{2}+cfrac{pi}{6})(kin Z),即对称轴有无数条,

    (k=0),得到其中的一条对称轴为(x=cfrac{pi}{6}),当(k)取其他的值时,都不能得到其他的选项,故选(B)

    法2:比较简单,利用函数在对称轴处的函数值能取到最值,故只需验证即可,

    比如,将(x=cfrac{pi}{12})代入(sin(2x+cfrac{pi}{6})),即(sincfrac{pi}{3}),并不能使得其取到最值(pm 1),故舍去(A)

    (x=cfrac{pi}{6})代入(sin(2x+cfrac{pi}{6})),即(sincfrac{pi}{2}),能使得其取到最值(+1),故(B)必然满足;用同样的方法可以验证其余的选项错误;

    例7【2018江西赣州5月适应性考试】若函数(f(x)=3cos(2x+cfrac{pi}{6})-a)([0,cfrac{pi}{2}])上有两个零点(x_1)(x_2),则(x_1+x_2)=【】

    $A、cfrac{pi}{3}$ $B、cfrac{2pi}{3}$ $C、cfrac{5pi}{6}$ $D、2pi$

    分析:只需要考虑函数(y=cos(2x+cfrac{pi}{6}))的对称性即可,由(2x+cfrac{pi}{6}=kpi)(kin Z)

    得到对称轴(x=cfrac{kpi}{2}-cfrac{pi}{12}),由题可知,对称轴必须在([0,cfrac{pi}{2}])内,令(k=1),得到对称轴为(x=cfrac{5pi}{12})

    又两个零点(x_1)(x_2)关于对称轴(x=cfrac{5pi}{12})对称,故(x_1+x_2=cfrac{5pi}{6}),故选(C)

    例8【2019届高三理科数学三轮模拟试题】若函数(f(x)=asinx+cosx)((a)为常数,(ain R))的图像关于直线(x=cfrac{pi}{6})对称,则函数(g(x)=sinx+acosx)的图像【】

    $A、关于直线x=-cfrac{pi}{3}对称$ $B、关于直线x=cfrac{pi}{6}对称$ $C、关于点(cfrac{pi}{3},0)对称$ $D、关于点(cfrac{5pi}{6},0)对称$

    分析:(y=f(x)=sqrt{a^2+1}sin(x+phi)),其中(tanphi=cfrac{1}{a})

    由函数(f(x)=asinx+cosx)的图像关于直线(x=cfrac{pi}{6})对称,可知(phi=cfrac{pi}{3})

    (a=cfrac{sqrt{3}}{3}),又(g(x)=sinx+cfrac{sqrt{3}}{3}cosx=cfrac{2sqrt{3}}{3}sin(x+cfrac{pi}{6}))

    逐项验证,可知选(D)

    例9【2018广东茂名一模】【有图情形】已知函数(f(x)=Asin(omega x+phi)(A>0,omega> 0,0<phi<pi)),其导函数的图象(f'(x))如图所示,则(f(cfrac{pi}{2}))=【】

    $A、2sqrt{3}$ $B、2$ $C、2sqrt{2}$ $D、4$

    分析:由于(f'(x)=omega Acos(omega x+phi)),由(cfrac{T}{4}=cfrac{3pi}{2}-cfrac{pi}{2}=pi),故(T=4pi),故(omega=cfrac{2pi}{4pi}=cfrac{1}{2})

    又由图可知,(omega A=cfrac{1}{2}A=2),故(A=4),又由图(f'(cfrac{pi}{2})=0=2cos(cfrac{1}{2} imes cfrac{pi}{2}+phi)),即(cfrac{pi}{4}+phi=kpi+cfrac{pi}{2})(kin Z),故(phi=kpi+cfrac{pi}{4}),令(k=0),即(phi=cfrac{pi}{4}in (0,pi))

    故函数(f(x)=4sin(cfrac{1}{2}x+cfrac{pi}{4})),则(f(cfrac{pi}{2})=4),故选(D)

    例10【2019高三理科数学二轮资料用题】【有图情形】已知函数(f(x)=Atan(omega x+phi)),其中(omega >0)(|phi|<cfrac{pi}{2})(y=f(x))的部分图象如图,则(f(cfrac{pi}{24}))=__________.

    分析:由图可知,(cfrac{T}{2}=cfrac{3pi}{8}-cfrac{pi}{8}=cfrac{pi}{4}),则(T=cfrac{pi}{2}),故(omega=cfrac{pi}{T}=2)

    又当(x=cfrac{3pi}{8})时,(2 imes cfrac{3pi}{8}+phi=kpi)(kin Z),则(phi=kpi-cfrac{3pi}{4})

    (k=1),则(phi=pi-cfrac{3pi}{4}=cfrac{pi}{4}in (-cfrac{pi}{2},cfrac{pi}{2})),又(x=0)时,(y=1)

    (Atan(2 imes 0+cfrac{pi}{4})=1),故(A=1),即(f(x)=tan(2x+cfrac{pi}{4}))

    (f(cfrac{pi}{24})=tan(2 imes cfrac{pi}{24}+cfrac{pi}{4})=sqrt{3})

    例11【无图情形】【2018届湖南衡阳八中第二次月考】已知函数(y=sin(ωx+φ)) ((ω>0,0<φ<π))的最小正周期为(π),且函数图象关于点((-cfrac{3pi}{8},0))对称,则该函数的解析式为________.

    分析:由于函数(y=sin(ωx+φ))的最小正周期为(π),故(omega=2),又图象关于点((-cfrac{3pi}{8},0))对称,

    (2 imes (-cfrac{3pi}{8})+phi=kpi),故(phi=kpi+cfrac{3pi}{4})(kin Z) ,

    (k=0)时,(phi=cfrac{3pi}{4}in (0,pi)),故解析式为(y=sin(2x+cfrac{3pi}{4})).

    例12【三轮模拟考试理科用题】已知(alpha)为第二象限角,(sin(alpha+cfrac{pi}{4})=cfrac{sqrt{2}}{10}),则(tancfrac{alpha}{2})的值为多少?

    法1:变形得到(cfrac{sqrt{2}}{2}(sinalpha+cosalpha)=cfrac{sqrt{2}}{10})

    解得(sinalpha+cosalpha=cfrac{1}{5}),又因为(alpha)为第二象限角,

    再结合勾股数可得(sinalpha=cfrac{4}{5},cosalpha=-cfrac{3}{5})

    (tanalpha=-cfrac{4}{3}),又由八卦图法可知(cfrac{alpha}{2})在第一、三象限,

    (tancfrac{alpha}{2}>0),再由(tanalpha=-cfrac{4}{3}=cfrac{2tancfrac{alpha}{2}}{1-(tancfrac{alpha}{2})^2})

    解方程得到(tancfrac{alpha}{2}=2)

    法2:同上法,得到(sinalpha=cfrac{4}{5},cosalpha=-cfrac{3}{5})

    (tancfrac{alpha}{2}=cfrac{sincfrac{alpha}{2}}{coscfrac{alpha}{2}})

    (=cfrac{2sincfrac{alpha}{2}coscfrac{alpha}{2}}{2coscfrac{alpha}{2}coscfrac{alpha}{2}})

    (=cfrac{sinalpha}{1+cosalpha}=cfrac{cfrac{4}{5}}{1-cfrac{3}{5}}=2)

    例13(三轮模拟考试理科用题)已知(f(x)=2Acos^2(omega x+phi)(A>0,omega>0,0<phi<cfrac{pi}{2})),直线(x=cfrac{pi}{3})和点((cfrac{pi}{12},0))分别是函数(f(x))图象上相邻的一条对称轴和一个对称中心,则函数(f(x))的单调增区间为【(quad)】.

    $A.[kpi-cfrac{2pi}{3} ,kpi-cfrac{pi}{6}](kin Z)$
    $B.[kpi-cfrac{pi}{6} ,kpi+cfrac{pi}{3}](kin Z)$
    $C.[kpi-cfrac{5pi}{12} ,kpi+cfrac{pi}{12}](kin Z)$
    $D.[kpi+cfrac{pi}{12} ,kpi+cfrac{7pi}{12}](kin Z)$

    分析:这类题目一般需要先将(f(x))转化为正弦型或者余弦型,再利用给定的条件分别求(omega)(phi),由

    (f(x)=2Acos^2(omega x+phi)=A[cos2(omega x+phi)+1]=Acos(2omega x+2phi)+A)

    故其周期为(T=cfrac{2pi}{2omega}=cfrac{pi}{omega})

    又由题目可知(cfrac{T}{4}=cfrac{pi}{3}-cfrac{pi}{12}=cfrac{pi}{4}),则(T=pi=cfrac{pi}{omega})

    (omega=1),则函数简化为(f(x)=Acos(2x+2phi)+A),再利用直线(x=cfrac{pi}{3})是函数(f(x))图象上的一条对称轴,

    (2 imes cfrac{pi}{3}+2phi=kpi,(kin Z)),解得(phi=cfrac{kpi}{2}-cfrac{pi}{3})

    (k=1),则(phi=cfrac{pi}{6}in (0,cfrac{pi}{2})),满足题意,故(f(x)=Acos(2x+2phi)+A=Acos(2x+cfrac{pi}{3})+A).

    (2kpi-pileq 2x+cfrac{pi}{3}leq 2kpi(kin Z)),解得(kpi-cfrac{2pi}{3}leq x leq kpi-cfrac{pi}{6}),即单调递增区间为(A.[kpi-cfrac{2pi}{3} ,kpi-cfrac{pi}{6}](kin Z));

    例14【2014(cdot)新课标全国卷Ⅰ】设(alpha,eta in (0,cfrac{pi}{2})),且(tanalpha=cfrac{1+sineta}{coseta}),则【】

    $A.3alpha-eta=cfrac{pi}{2}$ $B.3alpha+eta=cfrac{pi}{2}$ $C.2alpha-eta=cfrac{pi}{2}$ $D.2alpha+eta=cfrac{pi}{2}$

    分析:切化弦得到,(cfrac{sinalpha}{cosalpha}=cfrac{1+sineta}{coseta})

    (sinalpha coseta-cosalpha sineta=cosalpha),即(sin(alpha-eta)=cosalpha)

    又由已知可得,(-cfrac{pi}{2}<alpha-eta<cfrac{pi}{2})

    再结合(sin(alpha-eta)=cosalpha)(alpha in (0,cfrac{pi}{2}))(cosalpha>0)

    故可将(-cfrac{pi}{2}<alpha-eta<cfrac{pi}{2})压缩为(0<alpha-eta<cfrac{pi}{2}),,

    这样(sin(alpha-eta)=cosalpha);且(alpha,alpha-eta in (0,cfrac{pi}{2}))

    故有((alpha-eta)+alpha=cfrac{pi}{2}),即(2alpha-eta=cfrac{pi}{2}),选C.

    例15【2016(cdot)上海卷】【解三角方程】方程(3sinx=1+cos2x)在区间([0,2pi])上的解为_______________。

    分析:采用升幂降角公式,得到(3sinx=1+1-2sin^2x)

    整理为(2sin^2x+3sinx-2=0),即((sinx+2)(2sinx-1)=0)

    解得(sinx=-2(舍去))(sinx=cfrac{1}{2})

    再由(sinx=cfrac{1}{2})(xin[0,2pi])

    采用图像可得,(x=cfrac{pi}{6})(x=cfrac{5pi}{6})

    例16【连比形式,巧设比例因子】在(Delta ABC)中,(tanA:tanB:tanC=1:2:3),求(cfrac{AC}{AB})的值;

    分析:(巧设比例因子)设(tanA=k,tanB=2k,tanC=3k,(k>0)),

    则由(tanA imes tanB imes tanC=tanA+tanB+tanC)

    可知(6k=6k^3),解得(k=1),则有(tanA=1)(tanB=2)(tanC=3),

    再设比例因子,比如设(sinB=2m,cosB=m,(m>0)),由平方关系可得,(5m^2=1,m=cfrac{1}{sqrt{5}}),

    (sinB=cfrac{2}{sqrt{5}},sinC=cfrac{3}{sqrt{10}})

    (cfrac{AC}{AB}=cfrac{sinB}{sinC}=cfrac{cfrac{2}{sqrt{5}}}{cfrac{3}{sqrt{10}}}=cfrac{2sqrt{2}}{3}).

    例17已知(tanalpha=cfrac{1}{2}),求(sin^4alpha-cos^4alpha)的值。

    【法1】:方程组法,由(left{egin{array}{l}{cfrac{sinalpha}{cosalpha}=cfrac{1}{2}}\{sin^2alpha+cos^2alpha=1}end{array} ight.)

    解得(sin^2alpha=cfrac{1}{5})(cos^2alpha=cfrac{4}{5})

    代入得到(sin^4alpha-cos^4alpha=-cfrac{3}{5})

    【法2】:齐次式法,(sin^4alpha-cos^4alpha=(sin^2alpha-cos^2alpha)(sin^2alpha+cos^2alpha)=sin^2alpha-cos^2alpha)

    (=-cos2alpha=-cfrac{cos^2alpha-sin^2alpha}{sin^2alpha+cos^2alpha}=cfrac{1-tan^2alpha}{1+tan^2alpha}=-cfrac{3}{5})

    【法3】:由(cfrac{sinalpha}{cosalpha}=cfrac{1}{2}),引入比例因子,可设(sinalpha=k)(cosalpha=2k(k eq 0))

    (k^2+(2k)^2=1),可得(k^2=cfrac{1}{5}),故(k^4=cfrac{1}{25})

    (sin^4alpha-cos^4alpha=k^4-(2k)^4=-15k^4=-cfrac{3}{5})

    例18求值:(sin^21^{circ}+sin^22^{circ}+sin^23^{circ}+cdots+sin^288^{circ}+sin^289^{circ}=)

    分析:(sin^21^{circ}+sin^289^{circ}=1)(sin^22^{circ}+sin^288^{circ}=1)(cdots)(sin^244^{circ}+sin^246^{circ}=1)(sin^245^{circ}=cfrac{1}{2})

    故原式=(44+cfrac{1}{2}=44.5)

    例19【2019宝鸡质检二理科第9题文科第10题】函数(f(x)=sin(omega x+phi)+sqrt{3}cos(omega x+phi)(omega>0))的图像过点((1,2)),若(f(x))相邻的两个零点(x_1)(x_2),满足(|x_1-x_2|=6),则(f(x))的单调增区间为【】

    $A.[-2+12k,4+12k](kin Z)$
    $B.[-5+12k,1+12k](kin Z)$
    $C.[1+12k,7+12k](kin Z)$
    $D.[-2+6k,1+6k](kin Z)$

    分析:本题目综合考查了三角函数的解析式的求解和三角函数单调区间的求解;在求解三角函数解析式时,又同时考查了整体思想;

    [相关链接:对高中数学中的字母内涵的理解]

    (f(x)=sin(omega x+phi)+sqrt{3}cos(omega x+phi)=2sin(omega x+phi+cfrac{pi}{3}))

    由于函数图像过点((1,2)),将其代入,则有(2sin(omega imes 1+phi+cfrac{pi}{3})=2)

    (omega imes 1+phi+cfrac{pi}{3}=2kpi+cfrac{pi}{2}(kin Z))①,

    又由于(f(x))相邻的两个零点(x_1)(x_2),满足(|x_1-x_2|=6),[此处快速做草图是个难点]

    则可知(cfrac{T}{2}=6),则(T=12),故(omega=cfrac{2pi}{T}=cfrac{pi}{6})

    代入①式,得到(phi=2kpi(kin Z)),[此处对(phi)的处理是个难点,由于此处只强调(phi)的存在性,故从简原则,令(k=0)]

    故得到(phi=0),即所求解析式为(f(x)=2sin(cfrac{pi}{6}x+cfrac{pi}{3}))

    接下来,题目转化为:给定三角函数的解析式,求其单调增区间;

    (2kpi-cfrac{pi}{2}leqslant cfrac{pi}{6}x+cfrac{pi}{3}leqslant 2kpi-cfrac{pi}{2}(kin Z))

    用常规方法求解,得到(-5+12kleqslant xleqslant 1+12k(kin Z)),故选(B)

    此处演示,用博客如何搜素“求正弦型函数的解析式”;

  • 相关阅读:
    反射解决了什么问题
    virtualenv
    maven pom.xml 报错
    django调用py报错 django.core.exceptions.ImproperlyConfigured: Requested setting DEFAULT_INDEX_TABLESPACE, but settings are not configured.
    Django继承AbstractUser新建User Model时出现fields.E304错误
    celery 4.1下报kombu.exceptions.EncodeError: Object of type 'bytes' is not JSON serializable 处理方式
    centos 7 安装 python3.6 python3 安装步骤以及pip pip3安装挂载
    Qt中图片调用(1)
    利用批处理命令下载SOF文件的方法
    黑金开发板板上实现的液晶刷屏程序(1)
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/12289956.html
Copyright © 2020-2023  润新知