• Mysql分库分表方案


    Mysql分库分表方案

     

    Mysql分库分表方案

    1.为什么要分表:

    当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。

    mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。

    2. mysql proxy:amoeba

    做mysql集群,利用amoeba。

    从上层的java程序来讲,不需要知道主服务器和从服务器的来源,即主从数据库服务器对于上层来讲是透明的。可以通过amoeba来配置。

     3.大数据量并且访问频繁的表,将其分为若干个表

    比如对于某网站平台的数据库表-公司表,数据量很大,这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。

         某网站现在的数据量至多是5000万条,可以设计每张表容纳的数据量是500万条,也就是拆分成10张表,

    那么如何判断某张表的数据是否容量已满呢?可以在程序段对于要新增数据的表,在插入前先做统计表记录数量的操作,当<500万条数据,就直接插入,当已经到达阀值,可以在程序段新创建数据库表(或者已经事先创建好),再执行插入操作。

     4. 利用merge存储引擎来实现分表

    如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了。用merge存储引擎来实现分表, 这种方法比较适合.

    举例子:

     

     ------------------- ----------华丽的分割线--------------------------------------

     数据库架构

    1、简单的MySQL主从复制:

    MySQL的主从复制解决了数据库的读写分离,并很好的提升了读的性能,其图如下:

     

    其主从复制的过程如下图所示:

     

    但是,主从复制也带来其他一系列性能瓶颈问题:

    1. 写入无法扩展

    2. 写入无法缓存

    3. 复制延时

    4. 锁表率上升

    5. 表变大,缓存率下降

    那问题产生总得解决的,这就产生下面的优化方案,一起来看看。

    2、MySQL垂直分区

       如果把业务切割得足够独立,那把不同业务的数据放到不同的数据库服务器将是一个不错的方案,而且万一其中一个业务崩溃了也不会影响其他业务的正常进行,并且也起到了负载分流的作用,大大提升了数据库的吞吐能力。经过垂直分区后的数据库架构图如下:

     

    然而,尽管业务之间已经足够独立了,但是有些业务之间或多或少总会有点联系,如用户,基本上都会和每个业务相关联,况且这种分区方式,也不能解决单张表数据量暴涨的问题,因此为何不试试水平分割呢?

    3、MySQL水平分片(Sharding)

    这是一个非常好的思路,将用户按一定规则(按id哈希)分组,并把该组用户的数据存储到一个数据库分片中,即一个sharding,这样随着用户数量的增加,只要简单地配置一台服务器即可,原理图如下:

     

    如何来确定某个用户所在的shard呢,可以建一张用户和shard对应的数据表,每次请求先从这张表找用户的shard id,再从对应shard中查询相关数据,如下图所示:

     

    单库单表 

    单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。 


    单库多表 

    随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能。如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待。 

    可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的user_0000,user_0001等表,user_0000 + user_0001 + …的数据刚好是一份完整的数据。 


    多库多表 

             随着数据量增加也许单台DB的存储空间不够,随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平区分。 


    分库分表规则 

             设计表的时候需要确定此表按照什么样的规则进行分库分表。例如,当有新用户时,程序得确定将此用户信息添加到哪个表中;同理,当登录的时候我们得通过用户的账号找到数据库中对应的记录,所有的这些都需要按照某一规则进行。 
    路由 

             通过分库分表规则查找到对应的表和库的过程。如分库分表的规则是user_id mod 4的方式,当用户新注册了一个账号,账号id的123,我们可以通过id mod 4的方式确定此账号应该保存到User_0003表中。当用户123登录的时候,我们通过123 mod 4后确定记录在User_0003中。 
    分库分表产生的问题,及注意事项 

    1.   分库分表维度的问题 

    假如用户购买了商品,需要将交易记录保存取来,如果按照用户的纬度分表,则每个用户的交易记录都保存在同一表中,所以很快很方便的查找到某用户的 购买情况,但是某商品被购买的情况则很有可能分布在多张表中,查找起来比较麻烦。反之,按照商品维度分表,可以很方便的查找到此商品的购买情况,但要查找 到买人的交易记录比较麻烦。 



    所以常见的解决方式有: 

         a.通过扫表的方式解决,此方法基本不可能,效率太低了。 

         b.记录两份数据,一份按照用户纬度分表,一份按照商品维度分表。 

         c.通过搜索引擎解决,但如果实时性要求很高,又得关系到实时搜索。 



    2.   联合查询的问题 

    联合查询基本不可能,因为关联的表有可能不在同一数据库中。 



    3.   避免跨库事务 

    避免在一个事务中修改db0中的表的时候同时修改db1中的表,一个是操作起来更复杂,效率也会有一定影响。 



    4.   尽量把同一组数据放到同一DB服务器上 

    例如将卖家a的商品和交易信息都放到db0中,当db1挂了的时候,卖家a相关的东西可以正常使用。也就是说避免数据库中的数据依赖另一数据库中的数据。 

    一主多备 

    在实际的应用中,绝大部分情况都是读远大于写。Mysql提供了读写分离的机制,所有的写操作都必须对应到Master,读操作可以在 Master和Slave机器上进行,Slave与Master的结构完全一样,一个Master可以有多个Slave,甚至Slave下还可以挂 Slave,通过此方式可以有效的提高DB集群的 QPS.                                                       

    所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。 

    此外,可以看出Master是集群的瓶颈,当写操作过多,会严重影响到Master的稳定性,如果Master挂掉,整个集群都将不能正常工作。 

    所以,1. 当读压力很大的时候,可以考虑添加Slave机器的分式解决,但是当Slave机器达到一定的数量就得考虑分库了。 2. 当写压力很大的时候,就必须得进行分库操作。 

    --------------------------------------------- 

    MySQL使用为什么要分库分表 
    可以用说用到MySQL的地方,只要数据量一大, 马上就会遇到一个问题,要分库分表. 
    这里引用一个问题为什么要分库分表呢?MySQL处理不了大的表吗? 
    其实是可以处理的大表的.我所经历的项目中单表物理上文件大小在80G多,单表记录数在5亿以上,而且这个表 
    属于一个非常核用的表:朋友关系表. 

    但这种方式可以说不是一个最佳方式. 因为面临文件系统如Ext3文件系统对大于大文件处理上也有许多问题. 
    这个层面可以用xfs文件系统进行替换.但MySQL单表太大后有一个问题是不好解决: 表结构调整相关的操作基 
    本不在可能.所以大项在使用中都会面监着分库分表的应用. 

    从Innodb本身来讲数据文件的Btree上只有两个锁, 叶子节点锁和子节点锁,可以想而知道,当发生页拆分或是添加 
    新叶时都会造成表里不能写入数据. 
    所以分库分表还就是一个比较好的选择了. 

    那么分库分表多少合适呢? 
    经测试在单表1000万条记录一下,写入读取性能是比较好的. 这样在留点buffer,那么单表全是数据字型的保持在 
    800万条记录以下, 有字符型的单表保持在500万以下. 

    如果按 100库100表来规划,如用户业务: 
    500万*100*100 = 50000000万 = 5000亿记录. 

    心里有一个数了,按业务做规划还是比较容易的.

    用知识的力量武装,把生活的绚烂点亮!
  • 相关阅读:
    汽车金融评分卡
    Lending Club 数据做数据分析&评分卡
    时间序列分析和预测 (转载)
    距离计算公式总结(转载)
    机器学习常用算法与辅助函数公式
    金融领域常用的数据分析方法
    常用模型评估方法总结
    A--集成算法的实现
    A--随机森林(RF)的 sciklit-learn 实现
    A--Scikit-Learn 实现决策树
  • 原文地址:https://www.cnblogs.com/w84036937/p/5337969.html
Copyright © 2020-2023  润新知