Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
解题思路一:
对set进行逐个遍历,递归实现,JAVA实现如下:
static public int ladderLength(String beginWord, String endWord, Set<String> wordDict) { int result = wordDict.size() + 2; Set<String> set = new HashSet<String>(wordDict); if (oneStep(beginWord, endWord)) return 2; for (String s : wordDict) { if (oneStep(beginWord, s)) { set.remove(s); int temp = ladderLength(s, endWord, set); if (temp != 0) result = Math.min(result, temp + 1); set.add(s); } } if (result == wordDict.size() + 2) return 0; return result; } public static boolean oneStep(String s1, String s2) { int res = 0; for (int i = 0; i < s1.length(); i++) if (s1.charAt(i) != s2.charAt(i)) res++; return res == 1; }
结果TLE
解题思路二:
发现直接遍历是行不通的,实际上如果使用了oneStep函数,不管怎么弄都会TLE的(貌似在C++中可以AC)。
本题的做法应该是采用图的BFS来做,同时oneStep的匹配也比较有意思,JAVA实现如下:
static public int ladderLength(String start, String end, Set<String> dict) { HashMap<String, Integer> disMap = new HashMap<String, Integer>(); LinkedList<String> queue = new LinkedList<String>(); queue.add(start); disMap.put(start, 1); while (!queue.isEmpty()) { String word = queue.poll(); for (int i = 0; i < word.length(); i++) { for (char ch = 'a'; ch <= 'z'; ch++) { StringBuilder sb = new StringBuilder(word); sb.setCharAt(i, ch); String nextWord = sb.toString(); if (end.equals(nextWord)) return disMap.get(word) + 1; if (dict.contains(nextWord) && !disMap.containsKey(nextWord)) { disMap.put(nextWord, disMap.get(word) + 1); queue.add(nextWord); } } } } return 0; }