Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5335 Accepted Submission(s): 1939
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
7 1 3
7 6 2
-1 1 1
Author
shǎ崽@HDU
Source
Recommend
1 #include<iostream> 2 #include<stdio.h> 3 #include<cstdlib> 4 #include<cstring> 5 #include<cstdlib> 6 using namespace std; 7 8 int a[200004],s[200004]; 9 int head,tail,len,n,k; 10 typedef struct 11 { 12 int sum; 13 int s,e; 14 }Queue; 15 Queue q[200004],tom,tmp; 16 17 void Init() 18 { 19 int i; 20 for(i=1;i<=n;i++) 21 scanf("%d",&a[i]); 22 len=n+k; 23 for(i=n+1;i<=len;i++) 24 a[i]=a[i-n]; 25 for(s[0]=0,i=1;i<=len;i++) 26 s[i]=a[i]+s[i-1]; 27 n=n+k; 28 len=len-k; 29 } 30 int main() 31 { 32 int T,i; 33 scanf("%d",&T); 34 while(T--) 35 { 36 scanf("%d%d",&n,&k); 37 Init(); 38 head=0;tail=0; 39 tom.sum=s[1];tom.s=1;tom.e=1; 40 q[0]=tom; 41 for(i=2;i<=n;i++) 42 { 43 tmp.sum=s[i]; 44 tmp.s=1; 45 tmp.e=i; 46 while( head<=tail && q[tail].sum>tmp.sum ) tail--; 47 q[++tail]=tmp; 48 while( head<=tail && q[head].e+k<tmp.e ) head++; 49 50 if(tmp.sum-q[head].sum>tom.sum && tmp.e!=q[head].e) 51 { 52 tom.sum=tmp.sum-q[head].sum; 53 tom.s=q[head].e+1; 54 tom.e=tmp.e; 55 } 56 else if( i<=k && tmp.sum>tom.sum) 57 { 58 tom=tmp; 59 } 60 } 61 printf("%d",tom.sum); 62 if( tom.s>len ) tom.s-=len; 63 if( tom.e>len ) tom.e-=len; 64 printf(" %d %d ",tom.s,tom.e); 65 } 66 return 0; 67 }