• Scalaz(31)- Free :自由数据结构-算式和算法的关注分离


       我们可以通过自由数据结构(Free Structure)实现对程序的算式和算法分离关注(separation of concern)。算式(Abstract Syntax Tree, AST)即运算表达式,是对程序功能的描述。算法则是程序的具体运算方式(Interpreter),它赋予了算式意义。下面我们先用一个例子简单解释何为算式、算法:

    用一个简单的表达式 1+2+3,这个表达式同时包含了算式和算法:运算表达式是 a Op b Op c, 算法是:Int加法,a,b,c为Int, oP为Int+。那么我们可不可把它分解成算式和算法呢?我们可以先把算式推导出来:Op(a,Op(b,c))。我们可以在算法里对Op即a,b,c进行多种定义,即通过这些定义我们能赋予算式不同的意义。这个例子可以形象的描述算式、算法关注分离的全过程:抽象描述我们要运算的程序,定义具体运算方式可以分开进行。

    实际上 1+2+3可以说是一种Monoid操作。我们看看是否能从中推导出Free Monoid,一个Monoid自由数据结构用来实现Monoidal操作的算式、算法分离关注。针对任意基本类型A的Monoid定义如下:

    1、一个二元函数 append: (A,A)=>A

    2、一个A类型的初始值(零值)zero

    Monoid必须遵循以下定律:

    1、append函数的关联性associativity: 对任意A类型的x,y,z - append(x,append(y,z)) === append(append(x,y),z)

    2、zero的同一律identity law: 对任意类型的x - append(zero,x) === append(x,zero)

    根据以上定律,上面的表达式 1+2+3 === 1+(2+(3+0))。它的算式可以是这样:append(x,append(y,append(z,zero)))。那么我们应该可以得到这样的Free Monoid自由数据结构:

    1 sealed trait FreeMonoid[+A]
    2 final case object Zero extends FreeMonoid[Nothing]
    3 final case class Append[A](l: A, r: FreeMonoid[A]) extends FreeMonoid[A]

    1::2::3::Nil >>> List(1,2,3),如果A是个Monoid那么List[A]也是个Monoid,List[A]是个Free Monoid自由数据结构,我们看下面的示范:

    1 def listOp[A](l: List[A]): FreeMonoid[A] = l match {
    2     case Nil => Zero
    3     case h :: t => Append(h,listOp(t))
    4 }                                                 //> listOp: [A](l: List[A])Exercises.freestruct.FreeMonoid[A]
    5 listOp(List(1,2,3))                               //> res0: Exercises.freestruct.FreeMonoid[Int] = Append(1,Append(2,Append(3,Zero
    6                                                   //| )))

    List是一个Free Monoid, 它的 Nil === Zero,  a ++ b === Append(a,b)。

    同样,我们可以从Monad的特性操作函数来推导Free Monad自由数据结构。我们可以用以下操作函数来构建一个Monad M[_]:

    1、point: A => M[A]

    2、join: M[M[A]] => M[A]

    3、map: (M[A], A => B) => M[B]

    (point+flatMap组合同样能构建Monad)

    Free Monad是基于类型构建器Functor F[_]的Free Monoid, 所以Free Monad的定义应该是这样的:

    sealed trait Free[F[_],A]

    我们可以直接把point转换成case class:

    final case class Return[F[_],A](a: A) extends Free[F,A] 

    join的输入类型是F[F[A]],我们需要把Free[F,A]放在内里:

    final case class Suspend[F[_],A](ffa: F[Free[F,A]) extends Free[F,A]

    我们现在可以猜测Free Monad的自由数据结构定义如下:

    1 sealed trait Free[F[_], A]
    2 final case class Return[F[_],A](a: A) extends Free[F,A]
    3 final case class Suspend[F[_],A](ffa: F[Free[F,A]]) extends Free[F,A]

    我们只需证明用以上结构可以实现Monad的所有特性操作函数,那么这个Free就是一个用Functor F产生Monad的Monad构造器,一个最简单结构的Monad构造器,即Free Monad:

     1 import scalaz.Functor
     2 final case class Return[F[_],A](a: A) extends Free[F,A]
     3 final case class Suspend[F[_],A](ffa: F[Free[F,A]]) extends Free[F,A]
     4 sealed trait Free[F[_],A] {
     5   def point(a: A) = Return[F,A](a)
     6   def flatMap[B](f: A => Free[F,B])(implicit F: Functor[F]): Free[F,B] =
     7     this match {
     8       case Return(a) => f(a)
     9       case Suspend(ffa) => Suspend[F,B](F.map(ffa)(fa => fa flatMap f))
    10     }
    11   def map[B](f: A => B): Free[F,B] = flatMap(a => Return[F,B](f(a)))
    12   def join(ffa: F[Free[F,A]]): Free[F,A] = Suspend[F,A](ffa)
    13 
    14 }

    这个Free自由数据结构足够支持我们实现point,flatMap,map,join这几个Monad特性操作函数,所以Free是个Free Monad。

    如果Free是个Free Monad,我们可以把Free[F,A]里的F[A]当做Program[Commands]。即我们可以用命令集Commands来独立描述程序Program。最终的程序Program是不会产生副作用的,所以容许最大限度的函数组合(function composition)。对Program的具体运算方法则可以独立分开实现。我们将在下次讨论中着重介绍Free Monad的实际应用方式:AST和Interpreter的实现过程。

     

     

     

     

  • 相关阅读:
    cf B. Number Busters
    hdu 5072 Coprime
    HDOJ迷宫城堡(判断强连通 tarjan算法)
    Entropy (huffman) 优先队列)
    Number Sequence
    Code (组合数)
    Round Numbers (排列组合)
    Naive and Silly Muggles (计算几何)
    SDUT 最短路径(二维SPFA)
    Pearls DP
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/5270118.html
Copyright © 2020-2023  润新知