• POJ 1006 Biorhythms (中国剩余定理)


    Biorhythms

    大意:有中文翻译

    思路:中国剩余定理的完美诠释

    中国剩余定理介绍

         在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

    1. 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
    2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
    3. 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。

         就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?

    中国剩余定理分析

         我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。

         首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

         有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

         这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。

         以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

    1. 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
    2. 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
    3. 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。

        因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

    1. n1除以3余2,且是5和7的公倍数。
    2. n2除以5余3,且是3和7的公倍数。
    3. n3除以7余2,且是3和5的公倍数。

        所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。

        这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。

        最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

    总结

       经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:

    1. 如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
    2. 如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。

    POJ 1006 代码:

     1 # include <map>
     2 # include <queue>
     3 # include <stack>
     4 # include <math.h>
     5 # include <stdio.h>
     6 # include <string.h>
     7 # include <iostream>
     8 # include <algorithm>
     9 #define LL long long
    10 using namespace std;
    11 
    12 void run()
    13 {
    14     int a, b, c, d, cnt = 0;
    15     while(~scanf("%d%d%d%d", &a, &b, &c, &d))
    16     {
    17         cnt++;
    18         if(a + b + c + d == -4)
    19         break;
    20         int Ans = (5544*a+14421*b+1288*c-d+21252)%21252;
    21         if(!Ans)
    22         Ans = 21252;
    23         printf("Case %d: the next triple peak occurs in %d days.
    ", cnt, Ans);
    24     }
    25 }
    26 
    27 int main(void)
    28 {
    29     run();
    30 
    31     return 0;
    32 }
    Biorhythms
     
  • 相关阅读:
    ContentResolver.query()—>buildQueryString()
    maven基础依赖外部lib包(依赖钉钉sdk为例)
    在 Windows 中配置Maven
    windows系统下设置mtu值的方法
    dotfuscator 在混淆.Net Framework 4.0以上版本的时候报错的解决方法2
    dotfuscator 在混淆.Net Framework 4.0以上版本的时候报错的解决方法
    C# 反编译防范
    SpringBoot 集成Shiro
    windows系统下同时安装mysql5.5和8.0.11
    Eclipse安装STS(Spring Tool Suite (STS) for Eclipse)插件
  • 原文地址:https://www.cnblogs.com/Silence-AC/p/3458323.html
Copyright © 2020-2023  润新知