题意:给出多重集合A,B。A为两个数的有序对多重集合,B为三个数的有序对多重集合,A有n个元素(ai,bi),B有m个元素(ci,di,ei)(依照多重集合定义,元素可以重复),定义集合C为所有有序对(a,c,d)的集合,其中(a,b)∈A,(c,d,e)∈B,且b=e
TOP(C)为所有有序对(a,b,c)∈C的集合,其中(a,b,c)满足C中不存在一个有序对(d,e,f),使得d>=a && e>=b && f>=c.求TOP(C)的元素个数
1<=N<=100000,1<=m<=100000
1<=ai,bi<=100000;1<=ci,di<=1000;1=<ei<=100000;
共1~10组数据,6000MS
算法/思路:树状数组:直接构造C集合,但其中的a满足a=max{ai,(ai,bi)∈A},然后按a从大到小考虑每个a对应的有序对(b,c),当前有序对满足条件当且仅当对所有曾经扫描过的(bi,ci),有b>bi或c>ci,该过程可用树状数组维护(对于所有有序对(b,c),用log(m)时间求出b大于bi时,c的最小值)。时间复杂度O(n+mlogm)
实现细节:由于A,B是多重集合,对于a要加计数器,(b,c)重复考虑即可,树状数组的实现,由于要维护区间[b,maxn],所以把所有位置i变成maxn-i+1丢进去。
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define rep(i,a,b) for (int i=a;i<=b;++i) const double eps=1e-7; struct point{ double x,y; point(){} point (double a,double b): x(a),y(b) {} friend point operator + (const point &a,const point &b){ return point(a.x+b.x,a.y+b.y); } friend point operator - (const point &a,const point &b){ return point(a.x-b.x,a.y-b.y); } friend point operator * (const double &r,const point &a){ return point(r*a.x,r*a.y); } friend bool operator == (const point &a,const point &b){ return (abs(a.x-b.x)<eps && abs(a.y-b.y)<eps); } double norm(){ return sqrt(x*x+y*y); } }; inline double det(point a,point b) {return a.x*b.y-a.y*b.x;} inline bool line_cross_segment(point s,point t,point a,point b) { return det(s-a,t-a)*det(s-b,t-b)<-eps; } int n,tot,x,y; point s[50],t[50],goal; int ans,temp; int check(point a,point b) { int temp=0; rep(i,1,n) if (line_cross_segment(s[i],t[i],a,b)) ++temp; return temp; } int main() { scanf("%d",&n); rep(i,1,n) scanf("%lf%lf%lf%lf",&s[i].x,&s[i].y,&t[i].x,&t[i].y); ans=100000; scanf("%lf%lf",&goal.x,&goal.y); rep(i,1,n) { ans=min(ans,check(s[i],goal)); ans=min(ans,check(t[i],goal)); } if (n==0) ans=0; printf("Number of doors = %d ",ans+1); return 0; }