• Python操作db2


    官方文档:https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.5.0/com.ibm.db2.luw.apdv.python.doc/doc/t0054682.html

    import ibm_db
    conn = ibm_db.connect("database=MICRO_11; "
                               "hostname=localhost; "
                               "port=50000; "
                               "protocol=tcpip; "
                               "uid=administrator; "
                               "pwd=wyz", "", "")
    stmt = ibm_db.exec_immediate(conn,"SELECT SYS_ORG_TYPE_CODE,SYS_ORG_TYPE_NAME "
                                      "FROM SYS_ORG_TYPE_TB "
                                      "WHERE SYS_ORG_TYPE_UPID IS NOT NULL")
    # if结果集条数为0:result==False
    # if结果集条数>0:结果为一个tuple
    result = ibm_db.fetch_tuple(stmt)
    while result:
        print(result[0], result[1]) # 顺序和select字段顺序一样
        result = ibm_db.fetch_tuple(stmt)

    一、建连接:

    '''
    ibm_db.connect() #非持久性连接
    ibm_db.pconnect()  #持久性连接,提升性能,连接不关闭
    '''
    import ibm_db
    conn = ibm_db.connect("dsn=name","username","password")
    #连接cataloged或非cataloged数据库
    ibm_db.connect("DATABASE=name;HOSTNAME=host;PORT=60000;PROTOCOL=TCPIP;UID=username;
                    PWD=password;", "", "")

    二、执行SQL:

    不带参数的

    '''
    string可以为XQuery表达式,用XMLQuery包装的
    如果将用户输入作为SQL变量,可能受到SQL注入攻击
    返回的是cursor类型,调用 ibm_db.num_rows()可以得到影响的数据行数
    如果执行错误,可通过ibm_db.stmt_error() 或 ibm_db.stmt_errormsg()得到错误信息
    '''
    import ibm_db
    conn = ibm_db.connect("dsn=name","username","password")
    stmt = ibm_db.exec_immediate(conn, "UPDATE employee SET bonus = '1000' WHERE job = 'MANAGER'")
    print "Number of affected rows: ", ibm_db.num_rows(stmt)
    # XQuery
    if conn:
        sql = "SELECT XMLSERIALIZE(XMLQUERY('for $i in $t/address where $i/city = "Olathe" return <zip>{$i/zip/text()}</zip>' passing c.xmlcol as "t") AS CLOB(32k)) FROM xml_test c WHERE id = 1"
        stmt = ibm_db.exec_immediate(conn, sql)
        result = ibm_db.fetch_both(stmt)
        while( result ):
            print "Result from XMLSerialize and XMLQuery:", result[0]
            result = ibm_db.fetch_both(stmt)

     带参数的:

    '''
    ibm_db.prepare(), ibm_db.bind_param(),ibm_db.execute()三个方法
    准备语句可以提高性能,因为数据库服务器为数据检索创建了优化的访问计划,如果再次执行该语句,则可以重用它
    '''
    import ibm_db
    conn = ibm_db.connect("dsn=name","username","password")
    sql = "SELECT EMPNO, LASTNAME FROM EMPLOYEE WHERE EMPNO > ? AND EMPNO < ?"
    stmt = ibm_db.prepare(conn, sql)
    max = 50
    min = 0
    # 绑定参数
    ibm_db.bind_param(stmt, 1, min)
    ibm_db.bind_param(stmt, 2, max)
    ibm_db.execute(stmt)
    # Process results
    
    # Invoke prepared statement again using dynamically bound parameters
    param = max, min, 
    ibm_db.execute(stmt, param)

     三、检索结果集:ibm_db.fetch_both(stmt,num) 如果指定游标为scrollable类型,【在调用ibm_db.exec_immediate()或ibm_db.prepare()的时候,num为检索的行数

    import ibm_db
    #  第一种方式:
    conn = ibm_db.connect( "dsn=name", "username", "password" )
    sql = "SELECT * FROM EMPLOYEE"
    stmt = ibm_db.exec_immediate(conn, sql)
    dictionary = ibm_db.fetch_both(stmt)
    while dictionary != False:
        print "The ID is : ",  dictionary["EMPNO"]
        print "The Name is : ", dictionary[1]
        dictionary = ibm_db.fetch_both(stmt)
    #  第二种方式:
    tuple = ibm_db.fetch_tuple(stmt)
    while tuple != False:
        print "The ID is : ", tuple[0]
        print "The name is : ", tuple[1]
        tuple = ibm_db.fetch_tuple(stmt)
    # 第三种方式:
    dictionary = ibm_db.fetch_assoc(stmt)
    while dictionary != False:
        print "The ID is : ", dictionary["EMPNO"]
        print "The name is : ", dictionary["FIRSTNME"]
        dictionary = ibm_db.fetch_assoc(stmt)
    # 第四种方式:
    while ibm_db.fetch_row(stmt) != False:
        print "The Employee number is : ",  ibm_db.result(stmt, 0)
        print "The Name is : ", ibm_db.result(stmt, "NAME")

     四、调用存储过程

    import ibm_db
    
    conn = ibm_db.connect("dsn=sample","username","password")
    if conn:
          sql = 'CALL match_animal(?, ?, ?)'
          stmt = ibm_db.prepare(conn, sql)
        
          name = "Peaches"
          second_name = "Rickety Ride"
          weight = 0
          ibm_db.bind_param(stmt, 1, name, ibm_db.SQL_PARAM_INPUT)
          ibm_db.bind_param(stmt, 2, second_name, ibm_db.SQL_PARAM_INPUT_OUTPUT)
          ibm_db.bind_param(stmt, 3, weight, ibm_db.SQL_PARAM_OUTPUT)
        
          print "Values of bound parameters _before_ CALL:"
          print "  1: %s 2: %s 3: %d
    " % (name, second_name, weight)
        
          if ibm_db.execute(stmt):
            print "Values of bound parameters _after_ CALL:"
            print "  1: %s 2: %s 3: %d
    " % (name, second_name, weight)

    五、开启事务:适合大批量插入数据提升性能

    import ibm_db
    
    array = { ibm_db.SQL_ATTR_AUTOCOMMIT : ibm_db.SQL_AUTOCOMMIT_OFF }
    conn = ibm_db.pconnect("dsn=SAMPLE", "user", "password", array)
    sql = "DELETE FROM EMPLOYEE"
    try:
       stmt = ibm_db.exec_immediate(conn, sql)
    except:
       print "Transaction couldn't be completed."
       ibm_db.rollback(conn)
    else:
       ibm_db.commit(conn)
       print "Transaction complete."

    六、错误处理:

    第一种:

    import ibm_db 
    try:
        conn = ibm_db.connect("dsn=sample","user","password")     
    except:     
        print "no connection:", ibm_db.conn_errormsg()
    else:
        print "The connection was successful" 

    第二种:

    import ibm_db
    conn = ibm_db.connect( "dsn=sample", "user", "password")
    sql = "DELETE FROM EMPLOYEE"
    try:
       stmt = ibm_db.exec_immediate(conn, sql)
    except:
       print "Transaction couldn't be completed:" , ibm_db.stmt_errormsg()
    else:
       print "Transaction complete."

    七、查看元数据

    注意:调用元数据函数消耗大量的空间。如果可能的话,考虑缓存调用的结果以便在后续调用中使用。

    ibm_db.client_info() 返回包含数据库客户端信息的只读对象.
    ibm_db.column_privileges() 返回一个结果集,列出表的column和其关联特权
    ibm_db.columns() 返回一个结果集,列出表的column和其关联元数据
    ibm_db.foreign_keys() 返回一个结果集,列出表的column和其关联元数据
    ibm_db.primary_keys() 返回一个结果集,列出表的外键
    ibm_db.procedure_columns() 返回一个结果集,列出一个或多个存储过程的参数
    ibm_db.procedures() 返回一个结果集,列出数据库里注册了的的存储过程
    ibm_db.server_info() 返回包含数据库服务器信息的只读对象.
    ibm_db.special_columns() 返回一个结果集,列出 表的唯一行标识符列
    ibm_db.statistics() 返回一个结果集,列出表的索引和统计信息
    ibm_db.table_privileges() 返回一个结果集,列出数据库中的表和相关权限。
     
    import ibm_db
    
    conn = ibm_db.connect("dsn=sample", "user", "password")
    client = ibm_db.client_info(conn)
    
    # DB客户端信息
    if client:
        print "DRIVER_NAME: string(%d) "%s"" % (len(client.DRIVER_NAME), client.DRIVER_NAME)
        print "DRIVER_VER: string(%d) "%s"" % (len(client.DRIVER_VER), client.DRIVER_VER)
        print "DATA_SOURCE_NAME: string(%d) "%s"" % (len(client.DATA_SOURCE_NAME), client.DATA_SOURCE_NAME)
        print "DRIVER_ODBC_VER: string(%d) "%s"" % (len(client.DRIVER_ODBC_VER), client.DRIVER_ODBC_VER)
        print "ODBC_VER: string(%d) "%s"" % (len(client.ODBC_VER), client.ODBC_VER)
        print "ODBC_SQL_CONFORMANCE: string(%d) "%s"" % (len(client.ODBC_SQL_CONFORMANCE), client.ODBC_SQL_CONFORMANCE)
        print "APPL_CODEPAGE: int(%s)" % client.APPL_CODEPAGE
        print "CONN_CODEPAGE: int(%s)" % client.CONN_CODEPAGE
        ibm_db.close(conn)
    else:
        print "Error."
    
    # DB服务器信息
    server = ibm_db.server_info(conn)
    
    if server:
        print "DBMS_NAME: string(%d) "%s"" % (len(server.DBMS_NAME), server.DBMS_NAME)
        print "DBMS_VER: string(%d) "%s"" % (len(server.DBMS_VER), server.DBMS_VER)
        print "DB_NAME: string(%d) "%s"" % (len(server.DB_NAME), server.DB_NAME)
        ibm_db.close(conn)
    else:
        print "Error."
  • 相关阅读:
    数组的拼接
    numpy的切片和索引
    细说python中的round()方法
    Numpy数组的创建
    快排 [随机数]
    对于归并排序递归的理解
    A1044 Shopping in Mars [连续子序列分割]
    A1085 Perfect Sequence [二分、two pointers]
    快速幂
    [转] 二分法求外接圆最大半径
  • 原文地址:https://www.cnblogs.com/staff/p/10021981.html
Copyright © 2020-2023  润新知