NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。
迭代器最基本的任务的可以完成对数组元素的访问。
import numpy as np
a = np.arange(6).reshape(2,3)
print ('原始数组是:')
print (a)
print ('
')
print ('迭代输出元素:')
for x in np.nditer(a):
print (x, end=", " )
print ('
')
输出结果为:
原始数组是:
[[0 1 2]
[3 4 5]]
迭代输出元素:
0, 1, 2, 3, 4, 5,
控制遍历顺序
- for x in np.nditer(a, order=‘F’):Fortran order,即是列序优先;
- for x in np.nditer(a.T, order=‘C’):C order,即是行序优先;
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('
')
print ('原始数组的转置是:')
b = a.T
print (b)
print ('
')
print ('以 C 风格顺序排序:')
c = b.copy(order='C')
print (c)
for x in np.nditer(c):
print (x, end=", " )
print ('
')
print ('以 F 风格顺序排序:')
c = b.copy(order='F')
print (c)
for x in np.nditer(c):
print (x, end=", " )
运行结果如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
原始数组的转置是:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
以 C 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,
以 F 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
使用外部循环
nditer类的构造器拥有flags参数,它可以接受下列值:
参数 | 描述 |
---|---|
c_index | 可以跟踪 C 顺序的索引 |
f_index | 可以跟踪 Fortran 顺序的索引 |
multi-index | 每次迭代可以跟踪一种索引类型 |
external_loop | 给出的值是具有多个值的一维数组,而不是零维数组 |
mport numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('
')
print ('修改后的数组是:')
for x in np.nditer(a, flags = ['external_loop'], order = 'F'):
print (x, end=", " )
输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
修改后的数组是:
[ 0 20 40], [ 5 25 45], [10 30 50], [15 35 55],
广播迭代
如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)。
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('第一个数组为:')
print (a)
print ('
')
print ('第二个数组为:')
b = np.array([1, 2, 3, 4], dtype = int)
print (b)
print ('
')
print ('修改后的数组为:')
for x,y in np.nditer([a,b]):
print ("%d:%d" % (x,y), end=", " )
输出结果为:
第一个数组为:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
第二个数组为:
[1 2 3 4]
修改后的数组为:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,