• NumPy IO


    Numpy 可以读写磁盘上的文本数据或二进制数据。
    NumPy 为 ndarray 对象引入了一个简单的文件格式:npy。
    npy 文件用于存储重建 ndarray 所需的数据、图形、dtype 和其他信息。
    常用的 IO 函数有:

    • load() 和 save() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npy
      的文件中。
    • savze() 函数用于将多个数组写入文件,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npz 的文件中。
    • loadtxt() 和 savetxt() 函数处理正常的文本文件(.txt 等)
      numpy.save()
      numpy.save() 函数将数组保存到以 .npy 为扩展名的文件中。
      numpy.save(file, arr, allow_pickle=True, fix_imports=True)
      参数说明:
    file:要保存的文件,扩展名为 .npy,如果文件路径末尾没有扩展名 .npy,该扩展名会被自动加上。
    arr: 要保存的数组
    allow_pickle: 可选,布尔值,允许使用 Python pickles 保存对象数组,Python 中的 pickle 
    用于在保存到磁盘文件或从磁盘文件读取之前,对对象进行序列化和反序列化。
    fix_imports: 可选,为了方便 Pyhton2 中读取 Python3 保存的数据。
    import numpy as np 
     
    a = np.array([1,2,3,4,5]) 
     
    # 保存到 outfile.npy 文件上
    np.save('outfile.npy',a) 
     
    # 保存到 outfile2.npy 文件上,如果文件路径末尾没有扩展名 .npy,该扩展名会被自动加上
    np.save('outfile2',a)

    我们可以查看文件内容:

    $ cat outfile.npy 
    ?NUMPYv{'descr': '<i8', 'fortran_order': False, 'shape': (5,), }  
    $ cat outfile2.npy 
    ?NUMPYv{'descr': '<i8', 'fortran_order': False, 'shape': (5,), }

    可以看出文件是乱码的,因为它们是 Numpy 专用的二进制格式后的数据。
    我们可以使用 load() 函数来读取数据就可以正常显示了:

    import numpy as np 
     
    b = np.load('outfile.npy')  
    print (b)

    输出结果为:

    [1 2 3 4 5]

    np.savez
    numpy.savez() 函数将多个数组保存到以 npz 为扩展名的文件中。
    numpy.savez(file, *args, **kwds)
    参数说明:

    • file:要保存的文件,扩展名为 .npz,如果文件路径末尾没有扩展名 .npz,该扩展名会被自动加上。
    • args: 要保存的数组,可以使用关键字参数为数组起一个名字,非关键字参数传递的数组会自动起名为 arr_0, arr_1, … 。
    • kwds: 要保存的数组使用关键字名称。
    import numpy as np 
     
    a = np.array([[1,2,3],[4,5,6]])
    b = np.arange(0, 1.0, 0.1)
    c = np.sin(b)
    # c 使用了关键字参数 sin_array
    np.savez("runoob.npz", a, b, sin_array = c)
    r = np.load("runoob.npz")  
    print(r.files) # 查看各个数组名称
    print(r["arr_0"]) # 数组 a
    print(r["arr_1"]) # 数组 b
    print(r["sin_array"]) # 数组 c

    输出结果为:

    ['sin_array', 'arr_0', 'arr_1']
    [[1 2 3]
     [4 5 6]]
    [0.  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
    [0.         0.09983342 0.19866933 0.29552021 0.38941834 0.47942554
     0.56464247 0.64421769 0.71735609 0.78332691]

    savetxt()
    savetxt() 函数是以简单的文本文件格式存储数据,对应的使用 loadtxt() 函数来获取数据。

    np.loadtxt(FILENAME, dtype=int, delimiter=' ')
    np.savetxt(FILENAME, a, fmt="%d", delimiter=",")

    参数 delimiter 可以指定各种分隔符、针对特定列的转换器函数、需要跳过的行数等。

    import numpy as np   
    a=np.arange(0,10,0.5).reshape(4,-1)
    np.savetxt("out.txt",a,fmt="%d",delimiter=",") # 改为保存为整数,以逗号分隔
    b = np.loadtxt("out.txt",delimiter=",") # load 时也要指定为逗号分隔
    print(b)

    输出结果为:

    [[0. 0. 1. 1. 2.]
     [2. 3. 3. 4. 4.]
     [5. 5. 6. 6. 7.]
     [7. 8. 8. 9. 9.]]
    别废话,拿你代码给我看。
  • 相关阅读:
    nodejs 访问mysql
    1.移动的矩形
    ubuntu 16.04 搜狗输入法无法中英文切换
    修改可选项文件实现自动连接数据库服务器
    Codeforces Round #374 (Div. 2)解题报告
    hihoCoder 1238 : Total Highway Distance(dfs + 二分)
    AIM Tech Round 3 (Div. 2) 题解
    Codeforces Round #367 (Div. 2) 题解
    图论模板集合
    poj1144Network (求割点模板题)
  • 原文地址:https://www.cnblogs.com/lvxueyang/p/13707503.html
Copyright © 2020-2023  润新知