目录
目录
题目链接
AGC015 C-Nuske vs Phantom Thnook AtCoder
题解
树的性质有:
如果每个蓝色连通块都是树,那么连通块个数=总点数−总边数。
二维前缀和维护点数和边数。
(O(nm + q))
代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#define gc getchar()
#define pc putchar
#define LL long long
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
void print(int x) {
if(x < 0) {
pc('-');
x = -x;
}
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
const int maxn = 2010;
int n,m,q;
int a[maxn][maxn];
int b[maxn][maxn],c[maxn][maxn];
char s[2007];
inline int calc(int a[maxn][maxn],int x1,int y1,int x2,int y2) {
if(x1 > x2 || y1 > y2) return 0;
return a[x2][y2] - a[x1 - 1][y2] - a[x2][y1 - 1] + a[x1 - 1][y1 - 1];
}
int main() {
n = read(),m = read(),q = read();
for(int i = 1;i <= n;++ i) {
scanf("%s",s + 1);
for(int j = 1;j <= m;++ j)
a[i][j] = s[j] - '0';
}
for(int i = 2;i <= n;++ i)
for(int j = 1;j <= m;++ j)
b[i][j] = a[i][j] & a[i - 1][j];
for(int i = 1;i <= n;++ i)
for(int j = 2;j <= m;++ j)
c[i][j] = a[i][j] & a[i][j - 1];
for(int i = 1;i <= n;++ i)
for(int j = 1;j <= m;++ j) {
a[i][j] = a[i][j] + a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
b[i][j] = b[i][j] + b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
c[i][j] = c[i][j] + c[i - 1][j] + c[i][j - 1] - c[i - 1][j - 1];
}
while(q -- ) {
int x1 = read(),y1 = read(),x2 = read(),y2 = read();
print(calc(a,x1,y1,x2,y2) - calc(b,x1 + 1,y1,x2,y2) - calc(c,x1,y1 + 1,x2,y2));
pc('
');
}
return 0;
}