• cartographer代码阅读笔记


    map_builder.h

    是算法的入口,封装了local submap和 global pose-graph的优化

    int MapBuilder:: AddTrajectoryBuiler() {
          std::unique_ptr<LocalTrajectoryBuilder2D> local_trajectory_builder;
        if (trajectory_options.has_trajectory_builder_2d_options()) {
          local_trajectory_builder = absl::make_unique<LocalTrajectoryBuilder2D>(
              trajectory_options.trajectory_builder_2d_options(),
              SelectRangeSensorIds(expected_sensor_ids));
        }
    
        DCHECK(dynamic_cast<PoseGraph2D*>(pose_graph_.get()));
    // 创建global trajectory的builder
        trajectory_builders_.push_back(absl::make_unique<CollatedTrajectoryBuilder>(
            trajectory_options, sensor_collator_.get(), trajectory_id,
            expected_sensor_ids,
            CreateGlobalTrajectoryBuilder2D(
                std::move(local_trajectory_builder), trajectory_id,
                static_cast<PoseGraph2D*>(pose_graph_.get()),
                local_slam_result_callback)));
    }
    
    // 通过这个去处理range data, imu的数据
      mapping:: TrajectoryBuilderInterface *GetTrajectoryBuilder(int trajectory_id) const override {
        return trajectory_builders_.at(trajectory_id).get();
      }
    

    collated_trajectory_builder.h

    // Collates sensor data using a sensor::CollatorInterface, then passes it on to
    // a mapping::TrajectoryBuilderInterface
    // 收集传感器数据,然后传给mapping::TracjectoryBuilderInterface

      CollatedTrajectoryBuilder(
          const proto::TrajectoryBuilderOptions& trajectory_options,
          sensor::CollatorInterface* sensor_collator, int trajectory_id,
          const std::set<SensorId>& expected_sensor_ids,
          std::unique_ptr<TrajectoryBuilderInterface> wrapped_trajectory_builder);
    
    // 不同传感器的数据
      void AddSensorData(
          const std::string& sensor_id,
          const sensor::TimedPointCloudData& timed_point_cloud_data) override {
        AddData(sensor::MakeDispatchable(sensor_id, timed_point_cloud_data));
      }
      void AddSensorData(const std::string& sensor_id,
                         const sensor::ImuData& imu_data) override {
        AddData(sensor::MakeDispatchable(sensor_id, imu_data));
      }
      void AddSensorData(const std::string& sensor_id,
                         const sensor::OdometryData& odometry_data) override {
        AddData(sensor::MakeDispatchable(sensor_id, odometry_data));
      }
    
    // 最后都传到trajectory builder
        void CollatedTrajectoryBuilder::HandleCollatedSensorData(
            const std::string& sensor_id, std::unique_ptr<sensor::Data> data) {
          data->AddToTrajectoryBuilder(wrapped_trajectory_builder_.get());
        }
    
    template <typename DataType>
    class Dispatchable : public Data {
     public:
      Dispatchable(const std::string &sensor_id, const DataType &data)
          : Data(sensor_id), data_(data) {}
    
      common:: Time GetTime() const override { return data_.time; }
      // sensor:: Data 最后还是调用trajectory_builder:: AddSensorData
      void AddToTrajectoryBuilder(
    
          mapping::TrajectoryBuilderInterface *const trajectory_builder) override {
        trajectory_builder->AddSensorData(sensor_id_, data_);
      }
      const DataType &data() const { return data_; }
    
     private:
      const DataType data_; 
    }; 
    
    

    global_trajectory_builder.cc

    template <typename LocalTrajectoryBuilder, typename PoseGraph>
    class GlobalTrajectoryBuilder : public mapping::TrajectoryBuilderInterface {
    
    // 构造函数是一个local trajectory加上一个pose graph, 一个local slam result的callback函数
      GlobalTrajectoryBuilder(
          std::unique_ptr<LocalTrajectoryBuilder> local_trajectory_builder,
          const int trajectory_id, PoseGraph* const pose_graph,
          const LocalSlamResultCallback& local_slam_result_callback);
    
    // 点云数据
        void AddSensorData(const std::string& sensor_id, const sensor::TimedPointCloudData& timed_point_cloud_data) override {
            std::unique_ptr<typename LocalTrajectoryBuilder::MatchingResult>
                matching_result = local_trajectory_builder_->AddRangeData(
                    sensor_id, timed_point_cloud_data);
            if (matching_result->insertion_result != nullptr) {
                kLocalSlamInsertionResults->Increment();
        // pose graph add node
                auto node_id = pose_graph_->AddNode(
                    matching_result->insertion_result->constant_data, trajectory_id_,
                    matching_result->insertion_result->insertion_submaps);
                CHECK_EQ(node_id.trajectory_id, trajectory_id_);
                insertion_result = absl::make_unique<InsertionResult>(InsertionResult{
                    node_id, matching_result->insertion_result->constant_data,
                    std::vector<std::shared_ptr<const Submap>>(
                        matching_result->insertion_result->insertion_submaps.begin(),
                        matching_result->insertion_result->insertion_submaps.end())});
            }
            if (local_slam_result_callback_) {
                local_slam_result_callback_(
                    trajectory_id_, matching_result->time, matching_result->local_pose,
                    std::move(matching_result->range_data_in_local),
                    std::move(insertion_result));
            }
        }
        
    
        void AddSensorData(const std::string& sensor_id,
                         const sensor::ImuData& imu_data) override {
            if (local_trajectory_builder_) {
            local_trajectory_builder_->AddImuData(imu_data);
            }
            pose_graph_->AddImuData(trajectory_id_, imu_data);
        }
    
        void AddSensorData(const std::string& sensor_id,
                         const sensor::OdometryData& odometry_data) override {
            CHECK(odometry_data.pose.IsValid()) << odometry_data.pose;
            if (local_trajectory_builder_) {
            local_trajectory_builder_->AddOdometryData(odometry_data);
            }
            pose_graph_->AddOdometryData(trajectory_id_, odometry_data);
        }
    }
    
    

    local_trajectory_builder_2d.h

    
    std::unique_ptr<LocalTrajectoryBuilder2D:: MatchingResult>
    LocalTrajectoryBuilder2D:: AddRangeData(const std::string& sensor_id, const sensor::TimedPointCloudData& unsynchronized_data) {
        auto synchronized_data =
          range_data_collator_.AddRangeData(sensor_id, unsynchronized_data);
    
        if (num_accumulated_ >= options_.num_accumulated_range_data()) {
            const common::Time current_sensor_time = synchronized_data.time;
            absl::optional<common::Duration> sensor_duration;
            if (last_sensor_time_.has_value()) {
            sensor_duration = current_sensor_time - last_sensor_time_.value();
    
            }
    
            last_sensor_time_ = current_sensor_time;
            num_accumulated_ = 0;
            const transform::Rigid3d gravity_alignment = transform::Rigid3d::Rotation(
                extrapolator_->EstimateGravityOrientation(time));
            // TODO(gaschler): This assumes that 'range_data_poses.back()' is at time
            // 'time'.
            accumulated_range_data_.origin = range_data_poses.back().translation();
            return AddAccumulatedRangeData(time,
                TransformToGravityAlignedFrameAndFilter(
                    gravity_alignment.cast<float>() * range_data_poses.back().inverse(),
                accumulated_range_data_),
                gravity_alignment, sensor_duration);
        }
    
    }
    
    std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult>
    LocalTrajectoryBuilder2D:: AddAccumulatedRangeData(const common::Time time,
        const sensor::RangeData& gravity_aligned_range_data,
        const transform::Rigid3d& gravity_alignment,
        const absl::optional<common::Duration>& sensor_duration) {          std::unique_ptr<transform::Rigid2d> pose_estimate_2d =
          ScanMatch(time, pose_prediction, filtered_gravity_aligned_point_cloud);
    
        if (pose_estimate_2d == nullptr) {
            LOG(WARNING) << "Scan matching failed.";
            return nullptr;
        }
    
        std::unique_ptr<InsertionResult> insertion_result = InsertIntoSubmap(
          time, range_data_in_local, filtered_gravity_aligned_point_cloud,
          pose_estimate, gravity_alignment.rotation());
    
        return absl::make_unique<MatchingResult>(
          MatchingResult{time, pose_estimate, std::move(range_data_in_local),
                         std::move(insertion_result)});
      }
    
  • 相关阅读:
    决策树之C4.5算法
    决策树之ID3算法
    AndroidStudio 3.4.2配置 Opencv 3.7
    Android 实现在ImageView上绘图
    Opencv 对比度增强 C++
    Opencv对比度增强 python API
    hive中与hbase外部表join时内存溢出(hive处理mapjoin的优化器机制)
    hive的数据导入与数据导出:(本地,云hdfs,hbase),列分隔符的设置,以及hdfs上传给pig如何处理
    hive的map类型处理
    pig的udf编写
  • 原文地址:https://www.cnblogs.com/shhu1993/p/13418954.html
Copyright © 2020-2023  润新知