• 决策树之C4.5算法


    预备知识:

    • 无条件信息熵
    • 条件信息熵
    • 信息增益
      这三个基础知识请查看我的上一篇博客 决策树之ID3算法
      这篇博客主要讲 信息增益率

    增益率(gain ratio):

    C4.5决策树算法不直接使用信息增益来选择最优的划分属性(使样本集合的纯度提高最多的属性,或者说使样本集合的不确定度降低最多的属性),而是使用增益率来选择最优划分属性。增益率定义为:
    G a i n _ r a t i o ( D , a ) = G a i n ( D , a ) I V ( a ) ( 1 ) Gain\_ratio(D,a) = frac{Gain(D,a)}{IV(a)}qquad(1) Gain_ratio(D,a)=IV(a)Gain(D,a)(1)其中 I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ l o g 2 ∣ D v ∣ ∣ D ∣ ( 2 ) IV(a)=-sum_{v=1}^{V}frac{|D^v|}{|D|}log_2frac{|D^v|}{|D|}qquad(2) IV(a)=v=1VDDvlog2DDv(2)
    称为属性 a a a的固有值(intrinsic value),如果属性 a a a的取值越多(即V越大),则 I V ( a ) IV(a) IV(a)的值通常会越大。因此增益率对取值较少的属性有所偏好(分母越小增益率越大),C4.5算法并不是直接选择增益率最大的划分属性,而是先从候选划分属性中找出信息增益高于平均水平的属性,再从中找出增益率最高的属性

    代码实现:

    C4.5算法是在ID3算法基础上加以改进,所以代码基本一样,只需要修改chooseBestAttrToSplit函数中的代码,代码片段如下:

    def chooseBestAttrToSplit(dataSet, DLenth):
        #属性数量
        attrsNum = len(dataSet[0])-1
        #print(range(attrsNum))
        #计算信息熵
        entD = Ent(dataSet)
        #计算信息增益率
        bestInfoGainRatio = 0.0
        bestAttr = -1
        infoGainList = []
        for i in range(attrsNum): #遍历每个样例的当前属性的属性值加入集合attrList
            attrList = [sample[i] for sample in dataSet]
            attrsValue = set(attrList)#转化为set,可以知道有几个不同的属性
            entDA = 0.0 # 初始化条件熵
            for value in attrsValue:#计算条件熵
                subDataSet = splitD(dataSet,value,i)#按属性值划分子集
                weight = len(subDataSet)/float(len(dataSet))#计算权重
                entDA += weight * Ent(subDataSet)
            infoGain = entD - entDA
            infoGainList.append({infoGain : i})#将当前属性计算得到的信息增益加入集合
        print(infoGainList)
        #求信息增益的平均值
        sumInfoGain = 0
        for each in infoGainList:
            sumInfoGain += list(each.keys())[0]
        #计算信息增益的平均值
        averInfoGain = float(sumInfoGain)/len(infoGainList)
        #找出比平均信息增益大的信息增益
        greaterThenAverInfoGain = []
        for each in infoGainList:
            if list(each.keys())[0] >= averInfoGain:# 注意这里是">="号,因为信息增益可能相等
                greaterThenAverInfoGain.append(each)
        #从其中计算信息增益率最大的属性
        for i in greaterThenAverInfoGain:
            attrIndex = list(i.values())[0]#属性下标
            print(attrIndex)
            attrList = [sample[attrIndex] for sample in dataSet]#当前属性对应的值全部加入集合
            attrsValue = set(attrList)#得到当前属性有几个不同的属性值
            #初始化属性固有值
            iva = 0.0
            #初始化信息增益
            entda = 0.0
            for value in attrsValue:  # 计算条件熵
                subDataSet = splitD(dataSet, value, attrIndex)  # 按属性值划分子集
                weight1 = len(subDataSet) / float(DLenth)  # 计算权重
                weight = len(subDataSet) / float(len(dataSet))  # 计算权重
                iva -= weight1 * log(weight1,2)
                entda += weight * Ent(subDataSet)
            infoGain = entD - entda
            #计算信息增益率
            gainRatio = float(infoGain)/iva
            print("gainRatio"+str(gainRatio))
            #选取信息增益率最大的属性
            if(gainRatio > bestInfoGainRatio):
                bestInfoGainRatio = gainRatio
                bestAttr = attrIndex
        print("bestAttr"+str(bestAttr))
        return bestAttr
    

    完整代码如下:

    • treeC45.py
    from math import log
    import operator
    import treePlotter
    
    dataSet = [['青绿'	,'蜷缩'	,'浊响'	,'清晰'	,'凹陷'	,'硬滑'	,'好瓜'],
               ['乌黑'	,'蜷缩'	,'沉闷'	,'清晰'	,'凹陷'	,'硬滑'	,'好瓜'],
               ['乌黑'	,'蜷缩'	,'浊响'	,'清晰'	,'凹陷'	,'硬滑'	,'好瓜'],
               ['青绿'	,'蜷缩'	,'沉闷'	,'清晰'	,'凹陷'	,'硬滑'	,'好瓜'],
               ['浅白'	,'蜷缩'	,'浊响'	,'清晰'	,'凹陷'	,'硬滑'	,'好瓜'],
               ['青绿'	,'稍蜷'	,'浊响'	,'清晰'	,'稍凹'	,'软粘'	,'好瓜'],
               ['乌黑'	,'稍蜷'	,'浊响'	,'稍糊'	,'稍凹'	,'软粘'	,'好瓜'],
               ['乌黑'	,'稍蜷'	,'浊响'	,'清晰'	,'稍凹'	,'硬滑'	,'好瓜'],
               ['乌黑'	,'稍蜷'	,'沉闷'	,'稍糊'	,'稍凹'	,'硬滑'	,'坏瓜'],
               ['青绿'	,'硬挺'	,'清脆'	,'清晰'	,'平坦'	,'软粘'	,'坏瓜'],
               ['浅白'	,'硬挺'	,'清脆'	,'模糊'	,'平坦'	,'硬滑'	,'坏瓜'],
               ['浅白'	,'蜷缩'	,'浊响'	,'模糊'	,'平坦'	,'软粘'	,'坏瓜'],
               ['青绿'	,'稍蜷'	,'浊响'	,'稍糊'	,'凹陷'	,'硬滑'	,'坏瓜'],
               ['浅白'	,'稍蜷'	,'沉闷'	,'稍糊'	,'凹陷'	,'硬滑'	,'坏瓜'],
               ['乌黑'	,'稍蜷'	,'浊响'	,'清晰'	,'稍凹'	,'软粘'	,'坏瓜'],
               ['浅白'	,'蜷缩'	,'浊响'	,'模糊'	,'平坦'	,'硬滑'	,'坏瓜'],
               ['青绿'	,'蜷缩'	,'沉闷'	,'稍糊'	,'稍凹'	,'硬滑'	,'坏瓜']]
    
    A = ['色泽','根蒂','敲声','纹理','脐部','触感']
    
    def isEqual(D):# 判断所有样本是否在所有的属性上取值相同
        for i in range(len(D)):#遍历样例
            for j in range(i+1,len(D)):#遍历之后的样例
                for k in range(len(D[i])-1):#遍历属性
                    if D[i][k] != D[j][k]:
                        return False
                    else:
                        continue
        return True
    
    def mostClass(cList):
        classCount={}#计数器
        for className in cList:
            if className not in classCount.keys():
                classCount[className] = 0
            classCount[className] += 1
        sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True)
        print(sortedClassCount[0][0])
        return sortedClassCount[0][0]
    
    def Ent(dataSet):
        sampleNum = len(dataSet)#样例总数
        classCount = {}#类标签计数器
        for sample in dataSet:
            curLabel = sample[-1]#当前的类标签是样例的最后一列
            if curLabel not in classCount.keys():
                classCount[curLabel] = 0
            classCount[curLabel] += 1
        infoEnt = 0.0# 初始化信息熵
        for key in classCount.keys():
            prob = float(classCount[key])/sampleNum
            infoEnt -= prob * log(prob,2)
        return infoEnt
    
    
    def splitD(dataSet,value,index):
        retDataSet = []
        for sample in dataSet:  # 遍历数据集,并抽取按axis的当前value特征进划分的数据集(不包括axis列的值)
            if sample[index] == value:  #
                reducedFeatVec = sample[:index]
                reducedFeatVec.extend(sample[index + 1:])
                retDataSet.append(reducedFeatVec)
                # print axis,value,reducedFeatVec
        if retDataSet == []:#如果为空集返回当前集合
            return dataSet
        return retDataSet
    
    
    def chooseBestAttrToSplit(dataSet, DLenth):
        #属性数量
        attrsNum = len(dataSet[0])-1
        #print(range(attrsNum))
        #计算信息熵
        entD = Ent(dataSet)
        #计算信息增益率
        bestInfoGainRatio = 0.0
        bestAttr = -1
        infoGainList = []
        for i in range(attrsNum): #遍历每个样例的当前属性的属性值加入集合attrList
            attrList = [sample[i] for sample in dataSet]
            attrsValue = set(attrList)#转化为set,可以知道有几个不同的属性
            entDA = 0.0 # 初始化条件熵
            for value in attrsValue:#计算条件熵
                subDataSet = splitD(dataSet,value,i)#按属性值划分子集
                weight = len(subDataSet)/float(len(dataSet))#计算权重
                entDA += weight * Ent(subDataSet)
            infoGain = entD - entDA
            infoGainList.append({infoGain : i})#将当前属性计算得到的信息增益加入集合
        print(infoGainList)
        #求信息增益的平均值
        sumInfoGain = 0
        for each in infoGainList:
            sumInfoGain += list(each.keys())[0]
        #计算信息增益的平均值
        averInfoGain = float(sumInfoGain)/len(infoGainList)
        #找出比平均信息增益大的信息增益
        greaterThenAverInfoGain = []
        for each in infoGainList:
            if list(each.keys())[0] >= averInfoGain:# 注意这里是">="号,因为信息增益可能相等
                greaterThenAverInfoGain.append(each)
        #从其中计算信息增益率最大的属性
        for i in greaterThenAverInfoGain:
            attrIndex = list(i.values())[0]#属性下标
            print(attrIndex)
            attrList = [sample[attrIndex] for sample in dataSet]#当前属性对应的值全部加入集合
            attrsValue = set(attrList)#得到当前属性有几个不同的属性值
            #初始化属性固有值
            iva = 0.0
            #初始化信息增益
            entda = 0.0
            for value in attrsValue:  # 计算条件熵
                subDataSet = splitD(dataSet, value, attrIndex)  # 按属性值划分子集
                weight1 = len(subDataSet) / float(DLenth)  # 计算权重
                weight = len(subDataSet) / float(len(dataSet))  # 计算权重
                iva -= weight1 * log(weight1,2)
                entda += weight * Ent(subDataSet)
            infoGain = entD - entda
            #计算信息增益率
            gainRatio = float(infoGain)/iva
            print("gainRatio"+str(gainRatio))
            #选取信息增益率最大的属性
            if(gainRatio > bestInfoGainRatio):
                bestInfoGainRatio = gainRatio
                bestAttr = attrIndex
    
        print("bestAttr"+str(bestAttr))
        return bestAttr
    
    
    def treeGenerate(D,A,Dlenth):
        print(D)
        CnameList = [sample[-1] for sample in D]#遍历每一个样例,将每个样例的类标签组成一个集合
        if CnameList.count(CnameList[0]) == len(CnameList):#当结点包含的样本全属于同一类别,无需划分,直接返回类标签
            return CnameList[0]
        if len(A) == 0 or isEqual(D):#如果A为空集或者所有样本在所有属性上取值相同,则无法划分,返回所含样本最多的类别
            return mostClass(CnameList)
        #从A中选择最优的划分属性
        bestAttrIndex = chooseBestAttrToSplit(D,Dlenth) #获取最优属性下标
        bestAttrName = A[bestAttrIndex]#获取最优属性名字
        #使用字典存储树信息
        treeDict = {bestAttrName:{}}
        del(A[bestAttrIndex])# 删除已经选取的特征
        attrList = [sample[bestAttrIndex] for sample in D] #获取每个样例最佳划分属性的属性值列表
        attrsValue = set(attrList)
        for value in attrsValue:
            subA = A[:]
            if len(D) == 0:#如果子集D为空集则,返回父集中样本最多的类
                return mostClass(CnameList)
            else:
                treeDict[bestAttrName][value] = treeGenerate(splitD(D,value,bestAttrIndex),subA,Dlenth)
        return treeDict
    
    
    if __name__ == '__main__':
        tree = treeGenerate(dataSet,A,len(dataSet))
        treePlotter.createPlot(tree)
    
    
    
    
    
    • treePlotter
    # _*_ coding: UTF-8 _*_
    
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    mpl.rcParams['font.sans-serif'] = ['KaiTi']
    mpl.rcParams['font.serif'] = ['KaiTi']
    
    """绘决策树的函数"""
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")  # 定义分支点的样式
    leafNode = dict(boxstyle="round4", fc="0.8")  # 定义叶节点的样式
    arrow_args = dict(arrowstyle="<-")  # 定义箭头标识样式
    
    
    # 计算树的叶子节点数量
    def getNumLeafs(myTree):
       numLeafs = 0
       firstStr = list(myTree.keys())[0]
       secondDict = myTree[firstStr]
       for key in secondDict.keys():
          if type(secondDict[key]).__name__ == 'dict':
             numLeafs += getNumLeafs(secondDict[key])
          else:
             numLeafs += 1
       return numLeafs
    
    
    # 计算树的最大深度
    def getTreeDepth(myTree):
       maxDepth = 0
       firstStr = list(myTree.keys())[0]
       secondDict = myTree[firstStr]
       for key in secondDict.keys():
          if type(secondDict[key]).__name__ == 'dict':
             thisDepth = 1 + getTreeDepth(secondDict[key])
          else:
             thisDepth = 1
          if thisDepth > maxDepth:
             maxDepth = thisDepth
       return maxDepth
    
    
    # 画出节点
    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
       createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', 
                               xytext=centerPt, textcoords='axes fraction', va="center", ha="center", 
                               bbox=nodeType, arrowprops=arrow_args)
    
    
    # 标箭头上的文字
    def plotMidText(cntrPt, parentPt, txtString):
       lens = len(txtString)
       xMid = (parentPt[0] + cntrPt[0]) / 2.0 - lens * 0.002
       yMid = (parentPt[1] + cntrPt[1]) / 2.0
       createPlot.ax1.text(xMid, yMid, txtString)
    
    
    def plotTree(myTree, parentPt, nodeTxt):
       numLeafs = getNumLeafs(myTree)
       depth = getTreeDepth(myTree)
       firstStr = list(myTree.keys())[0]
       cntrPt = (plotTree.x0ff + 
                 (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.y0ff)
       plotMidText(cntrPt, parentPt, nodeTxt)
       plotNode(firstStr, cntrPt, parentPt, decisionNode)
       secondDict = myTree[firstStr]
       plotTree.y0ff = plotTree.y0ff - 1.0 / plotTree.totalD
       for key in secondDict.keys():
          if type(secondDict[key]).__name__ == 'dict':
             plotTree(secondDict[key], cntrPt, str(key))
          else:
             plotTree.x0ff = plotTree.x0ff + 1.0 / plotTree.totalW
             plotNode(secondDict[key], 
                      (plotTree.x0ff, plotTree.y0ff), cntrPt, leafNode)
             plotMidText((plotTree.x0ff, plotTree.y0ff) 
                         , cntrPt, str(key))
       plotTree.y0ff = plotTree.y0ff + 1.0 / plotTree.totalD
    
    
    def createPlot(inTree):
       fig = plt.figure(1, facecolor='white')
       fig.clf()
       axprops = dict(xticks=[], yticks=[])
       createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
       plotTree.totalW = float(getNumLeafs(inTree))
       plotTree.totalD = float(getTreeDepth(inTree))
       plotTree.x0ff = -0.5 / plotTree.totalW
       plotTree.y0ff = 1.0
       plotTree(inTree, (0.5, 1.0), '')
       plt.show()
    

    运行结果:

    在这里插入图片描述

  • 相关阅读:
    [转载]混合高斯模型
    威流IIS日志分析器1.2版本发布
    获取datagridview列中button点击事件
    C#引用winwebmail的dll
    威流网站监控系统新增飞信提醒
    关于Server.MapPath()
    把"\"转换成"/"
    asp.net站点常见问题绵集
    动态显示系统时间
    得到一个文件夹下的文件,并将文件删除
  • 原文地址:https://www.cnblogs.com/PythonFCG/p/13860119.html
Copyright © 2020-2023  润新知