• 647. Palindromic Substrings(回文子字符串个数)


    Given a string, your task is to count how many palindromic substrings in this string.

    The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.

    Example 1:

    Input: "abc"
    Output: 3
    Explanation: Three palindromic strings: "a", "b", "c".
    

    Example 2:

    Input: "aaa"
    Output: 6
    Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".
    

    Note:

    1. The input string length won't exceed 1000.

    解释:这道题的关键是要遍历所有可能的结果。比如输入为:abc  需要遍历 (a,a)(a,b)(b,b)(b,c)(a,c)(c,c)(a,b,c),很明显只有三种是回文字符串。

    方法一:中心遍历法

    class Solution {
        private int cnt=0;
        public int countSubstrings(String s) {
            for(int i=0;i<s.length();i++){
                extendSubString(s,i,i);
                extendSubString(s,i,i+1);
            }
            return cnt;
        }
        private void extendSubString(String s,int start,int end){
            while(start>=0 && end<s.length() && s.charAt(start)==s.charAt(end)){
                start--;
                end++;
                cnt++;
            }
        }
    }

    方法二:动态规划

     公式:dp[i]=dp[i-1]+tmp;

    dp[i]表示回文数总数。tmp是每趟的回文数。

    class Solution {
       private boolean ifPalindromic(String s){
            for(int i=0;i<s.length()/2;i++){
                if(s.charAt(i)!=s.charAt(s.length()-1-i)){
                    return false;
                }
            }
            return true;
        }
        public int countSubstrings(String s) {
            int N=s.length();
            int [] dp=new int[N];
            dp[0]=1;
            int tmp=0;
            for(int i=1;i<N;i++){
                tmp=0;
                for(int j=0;j<=i;j++){
                    String tempString=s.substring(j,i+1);
                    if(s.charAt(i)==s.charAt(j) && ifPalindromic(tempString)){
                        tmp++;
    
                    }
                }
                dp[i]=dp[i-1]+tmp;
            }
            return dp[N-1];
        }
    }
    苟有恒,何必三更眠五更起;最无益,莫过一日暴十日寒。
  • 相关阅读:
    Android 开发之 HelloWorld
    Spring 声明式事务管理
    对于初步搭建好的SSH框架进行简化(注解的使用)
    在已有的 eclipse 中离线配置 android 开发环境
    SSH框架整合总结
    Android的学习第六章(布局一TableLayout)
    Android的学习第六章(布局二--RelativeLayout)
    Android的学习第六章(布局一LinearLayout)
    我的Android第五章
    我的Android第四章
  • 原文地址:https://www.cnblogs.com/shaer/p/10850071.html
Copyright © 2020-2023  润新知