• Android AudioPolicyService服务启动过程


    AudioPolicyService是策略的制定者,比如什么时候打开音频接口设备、某种Stream类型的音频对应什么设备等等。而AudioFlinger则是策略的执行者,例如具体如何与音频设备通信,如何维护现有系统中的音频设备,以及多个音频流的混音如何处理等等都得由它来完成。AudioPolicyService根据用户配置来指导AudioFlinger加载设备接口,起到路由功能。

    AudioPolicyService启动过程

    AudioPolicyService服务运行在mediaserver进程中,随着mediaserver进程启动而启动。

    frameworksavmediamediaserver Main_mediaserver.cpp

    int main(int argc, char** argv)
    {
        sp proc(ProcessState::self());
        sp sm = defaultServiceManager();
        ALOGI("ServiceManager: %p", sm.get());
        VolumeManager::instantiate(); // volumemanager have to be started before audioflinger
        AudioFlinger::instantiate();
        MediaPlayerService::instantiate();
        CameraService::instantiate();
        AudioPolicyService::instantiate();
        ProcessState::self()->startThreadPool();
        IPCThreadState::self()->joinThreadPool();
    }
    

    AudioPolicyService继承了模板类BinderService,该类用于注册native service。

    frameworks ativeincludeinder BinderService.h

    template
    class BinderService
    {
    public:
        static status_t publish(bool allowIsolated = false) {
            sp sm(defaultServiceManager());
            return sm->addService(String16(SERVICE::getServiceName()), new SERVICE(), allowIsolated);
        }
        static void instantiate() { publish(); }
    };
    

    BinderService是一个模板类,该类的publish函数就是完成向ServiceManager注册服务。

    static const char *getServiceName() { return "media.audio_policy"; }

    AudioPolicyService注册名为media.audio_policy的服务。

    AudioPolicyService::AudioPolicyService()
        : BnAudioPolicyService() , mpAudioPolicyDev(NULL) , mpAudioPolicy(NULL)
    {
        char value[PROPERTY_VALUE_MAX];
        const struct hw_module_t *module;
        int forced_val;
        int rc;
        Mutex::Autolock _l(mLock);
        // start tone playback thread
        mTonePlaybackThread = new AudioCommandThread(String8("ApmTone"), this);
        // start audio commands thread
        mAudioCommandThread = new AudioCommandThread(String8("ApmAudio"), this);
        // start output activity command thread
        mOutputCommandThread = new AudioCommandThread(String8("ApmOutput"), this);
        /* instantiate the audio policy manager */
    	/* 加载audio_policy.default.so库得到audio_policy_module模块 */
        rc = hw_get_module(AUDIO_POLICY_HARDWARE_MODULE_ID, &module);
        if (rc)
            return;
    	/* 通过audio_policy_module模块打开audio_policy_device设备 */
        rc = audio_policy_dev_open(module, &mpAudioPolicyDev);
        ALOGE_IF(rc, "couldn't open audio policy device (%s)", strerror(-rc));
        if (rc)
            return;
    	//通过audio_policy_device设备创建audio_policy
        rc = mpAudioPolicyDev->create_audio_policy(mpAudioPolicyDev, &aps_ops, this,
                                                   &mpAudioPolicy);
        ALOGE_IF(rc, "couldn't create audio policy (%s)", strerror(-rc));
        if (rc)
            return;
        rc = mpAudioPolicy->init_check(mpAudioPolicy);
        ALOGE_IF(rc, "couldn't init_check the audio policy (%s)", strerror(-rc));
        if (rc)
            return;
        /* SPRD: maybe set this property better, but here just change the default value @{ */
        property_get("ro.camera.sound.forced", value, "1");
        forced_val = strtol(value, NULL, 0);
        ALOGV("setForceUse() !forced_val=%d ",!forced_val);
        mpAudioPolicy->set_can_mute_enforced_audible(mpAudioPolicy, !forced_val);
        ALOGI("Loaded audio policy from %s (%s)", module->name, module->id);
        // 读取audio_effects.conf文件
        if (access(AUDIO_EFFECT_VENDOR_CONFIG_FILE, R_OK) == 0) {
            loadPreProcessorConfig(AUDIO_EFFECT_VENDOR_CONFIG_FILE);
        } else if (access(AUDIO_EFFECT_DEFAULT_CONFIG_FILE, R_OK) == 0) {
            loadPreProcessorConfig(AUDIO_EFFECT_DEFAULT_CONFIG_FILE);
        }
    }
    
        创建AudioCommandThread (ApmTone、ApmAudio、ApmOutput)加载legacy_ap_module打开legacy_ap_device创建legacy_audio_policy读取audio_effects.conf

    创建AudioCommandThread线程

    在AudioPolicyService对象构造过程中,分别创建了ApmTone、ApmAudio、ApmOutput三个AudioCommandThread线程:

    1、 ApmTone用于播放tone音;

    2、 ApmAudio用于执行audio命令;

    3、ApmOutput用于执行输出命令;

    在第一次强引用AudioCommandThread线程对象时,AudioCommandThread的onFirstRef函数被回调,在此启动线程

    void AudioPolicyService::AudioCommandThread::onFirstRef()
    {
        run(mName.string(), ANDROID_PRIORITY_AUDIO);
    }
    

    这里采用异步方式来执行audio command,当需要执行上表中的命令时,首先将命令投递到AudioCommandThread的mAudioCommands命令向量表中,然后通过mWaitWorkCV.signal()唤醒AudioCommandThread线程,被唤醒的AudioCommandThread线程执行完command后,又通过mWaitWorkCV.waitRelative(mLock, waitTime)睡眠等待命令到来。

    加载audio_policy_module模块

    audio_policy硬件抽象层动态库位于/system/lib/hw/目录下,命名为:audio_policy.$(TARGET_BOARD_PLATFORM).so。audiopolicy的硬件抽象层定义在hardwarelibhardware_legacyaudioaudio_policy_hal.cpp中,AUDIO_POLICY_HARDWARE_MODULE_ID硬件抽象模块定义如下:

    hardwarelibhardware_legacyaudio audio_policy_hal.cpp【audio_policy.scx15.so】

    struct legacy_ap_module HAL_MODULE_INFO_SYM = {
        module: {
            common: {
                tag: HARDWARE_MODULE_TAG,
                version_major: 1,
                version_minor: 0,
                id: AUDIO_POLICY_HARDWARE_MODULE_ID,
                name: "LEGACY Audio Policy HAL",
                author: "The Android Open Source Project",
                methods: &legacy_ap_module_methods,
                dso : NULL,
                reserved : {0},
            },
        },
    };
    

    legacy_ap_module继承于audio_policy_module。

    关于hw_get_module函数加载硬件抽象层模块的过程请参考Android硬件抽象Hardware库加载过程源码分析。

    打开audio_policy_device设备

    hardwarelibhardwareincludehardware audio_policy.h

    static inline int audio_policy_dev_open(const hw_module_t* module,
                                        struct audio_policy_device** device)
    {
        return module->methods->open(module, AUDIO_POLICY_INTERFACE,
                                     (hw_device_t**)device);
    }
    

    通过legacy_ap_module模块的open方法来打开一个legacy_ap_device设备。

    hardwarelibhardware_legacyaudio audio_policy_hal.cpp

    static int legacy_ap_dev_open(const hw_module_t* module, const char* name,
                                        hw_device_t** device)
    {
        struct legacy_ap_device *dev;
        if (strcmp(name, AUDIO_POLICY_INTERFACE) != 0)
            return -EINVAL;
        dev = (struct legacy_ap_device *)calloc(1, sizeof(*dev));
        if (!dev)
            return -ENOMEM;
        dev->device.common.tag = HARDWARE_DEVICE_TAG;
        dev->device.common.version = 0;
        dev->device.common.module = const_cast<hw_module_t*>(module);
        dev->device.common.close = legacy_ap_dev_close;
        dev->device.create_audio_policy = create_legacy_ap;
        dev->device.destroy_audio_policy = destroy_legacy_ap;
        *device = &dev->device.common;
        return 0;
    }
    

    打开得到一个legacy_ap_device设备,通过该抽象设备可以创建一个audio_policy对象。

    创建audio_policy对象

    在打开legacy_ap_device设备时,该设备的create_audio_policy成员初始化为create_legacy_ap函数指针,我们通过legacy_ap_device设备可以创建一个legacy_audio_policy对象。

    rc = mpAudioPolicyDev->create_audio_policy(mpAudioPolicyDev, &aps_ops, this,
                                                   &mpAudioPolicy);
    

    这里通过audio_policy_device设备创建audio策略对象

    hardwarelibhardware_legacyaudio audio_policy_hal.cpp

    static int create_legacy_ap(const struct audio_policy_device *device,
                                struct audio_policy_service_ops *aps_ops,
                                void *service,
                                struct audio_policy **ap)
    {
        struct legacy_audio_policy *lap;
        int ret;
        if (!service || !aps_ops)
            return -EINVAL;
        lap = (struct legacy_audio_policy *)calloc(1, sizeof(*lap));
        if (!lap)
            return -ENOMEM;
    lap->policy.set_device_connection_state = ap_set_device_connection_state;
    …
        lap->policy.dump = ap_dump;
        lap->policy.is_offload_supported = ap_is_offload_supported;
        lap->service = service;
        lap->aps_ops = aps_ops;
        lap->service_client = new AudioPolicyCompatClient(aps_ops, service);
        if (!lap->service_client) {
            ret = -ENOMEM;
            goto err_new_compat_client;
        }
        lap->apm = createAudioPolicyManager(lap->service_client);
        if (!lap->apm) {
            ret = -ENOMEM;
            goto err_create_apm;
        }
        *ap = &lap->policy;
        return 0;
    err_create_apm:
        delete lap->service_client;
    err_new_compat_client:
        free(lap);
        *ap = NULL;
        return ret;
    }
    

    audio_policy实现在audio_policy_hal.cpp中,audio_policy_service_ops实现在AudioPolicyService.cpp中。create_audio_policy()函数就是创建并初始化一个legacy_audio_policy对象。

    audio_policy与AudioPolicyService、AudioPolicyCompatClient之间的关系如下:

    AudioPolicyClient创建

    hardwarelibhardware_legacyaudio AudioPolicyCompatClient.h

    AudioPolicyCompatClient(struct audio_policy_service_ops *serviceOps,void *service) :
    		mServiceOps(serviceOps) , mService(service) {}
    

    AudioPolicyCompatClient是对audio_policy_service_ops的封装类,对外提供audio_policy_service_ops数据结构中定义的接口。

    AudioPolicyManager创建

    extern "C" AudioPolicyInterface* createAudioPolicyManager(AudioPolicyClientInterface *clientInterface)
    {
        ALOGI("SPRD policy manager created.");
        return new AudioPolicyManagerSPRD(clientInterface);
    }
    

    使用AudioPolicyClientInterface对象来构造AudioPolicyManagerSPRD对象,AudioPolicyManagerSPRD继承于AudioPolicyManagerBase,而AudioPolicyManagerBase又继承于AudioPolicyInterface。

    hardwarelibhardware_legacyaudio AudioPolicyManagerBase.cpp

    AudioPolicyManagerBase::AudioPolicyManagerBase(AudioPolicyClientInterface *clientInterface)
        :
    #ifdef AUDIO_POLICY_TEST
        Thread(false),
    #endif //AUDIO_POLICY_TEST
        //变量初始化
        mPrimaryOutput((audio_io_handle_t)0),
        mAvailableOutputDevices(AUDIO_DEVICE_NONE),
        mPhoneState(AudioSystem::MODE_NORMAL),
        mLimitRingtoneVolume(false), mLastVoiceVolume(-1.0f),
        mTotalEffectsCpuLoad(0), mTotalEffectsMemory(0),
        mA2dpSuspended(false), mHasA2dp(false), mHasUsb(false), mHasRemoteSubmix(false),
        mSpeakerDrcEnabled(false), mFmOffGoing(false)
    {
    	//引用AudioPolicyCompatClient对象,这样音频管理器AudioPolicyManager就可以使用audio_policy_service_ops中的接口
        mpClientInterface = clientInterface;
        for (int i = 0; i < AudioSystem::NUM_FORCE_USE; i++) {
            mForceUse[i] = AudioSystem::FORCE_NONE;
        }
        mA2dpDeviceAddress = String8("");
        mScoDeviceAddress = String8("");
        mUsbCardAndDevice = String8("");
        /**
         * 优先加载/vendor/etc/audio_policy.conf配置文件,如果该配置文件不存在,则
         * 加载/system/etc/audio_policy.conf配置文件,如果该文件还是不存在,则通过
         * 函数defaultAudioPolicyConfig()来设置默认音频接口
         */
        if (loadAudioPolicyConfig(AUDIO_POLICY_VENDOR_CONFIG_FILE) != NO_ERROR) {
            if (loadAudioPolicyConfig(AUDIO_POLICY_CONFIG_FILE) != NO_ERROR) {
                ALOGE("could not load audio policy configuration file, setting defaults");
                defaultAudioPolicyConfig();
            }
        }
        //设置各种音频流对应的音量调节点,must be done after reading the policy
        initializeVolumeCurves();
        // open all output streams needed to access attached devices
        for (size_t i = 0; i < mHwModules.size(); i++) {
        	//通过名称打开对应的音频接口硬件抽象库
            mHwModules[i]->mHandle = mpClientInterface->loadHwModule(mHwModules[i]->mName);
            if (mHwModules[i]->mHandle == 0) {
                ALOGW("could not open HW module %s", mHwModules[i]->mName);
                continue;
            }
            // open all output streams needed to access attached devices
            // except for direct output streams that are only opened when they are actually
            // required by an app.
            for (size_t j = 0; j < mHwModules[i]->mOutputProfiles.size(); j++)
            {
                const IOProfile *outProfile = mHwModules[i]->mOutputProfiles[j];
                //打开mAttachedOutputDevices对应的输出
                if ((outProfile->mSupportedDevices & mAttachedOutputDevices) &&
                        ((outProfile->mFlags & AUDIO_OUTPUT_FLAG_DIRECT) == 0)) {
                	//将输出IOProfile封装为AudioOutputDescriptor对象
                    AudioOutputDescriptor *outputDesc = new AudioOutputDescriptor(outProfile);
                    //设置当前音频接口的默认输出设备
                    outputDesc->mDevice = (audio_devices_t)(mDefaultOutputDevice & outProfile->mSupportedDevices);
                    //打开输出,在AudioFlinger中创建PlaybackThread线程,并返回该线程的id
                    audio_io_handle_t output = mpClientInterface->openOutput(
                                                    outProfile->mModule->mHandle,
                                                    &outputDesc->mDevice,
                                                    &outputDesc->mSamplingRate,
                                                    &outputDesc->mFormat,
                                                    &outputDesc->mChannelMask,
                                                    &outputDesc->mLatency,
                                                    outputDesc->mFlags);
                    if (output == 0) {
                        delete outputDesc;
                    } else {
                    	//设置可以使用的输出设备为mAttachedOutputDevices
                        mAvailableOutputDevices =(audio_devices_t)(mAvailableOutputDevices | (outProfile->mSupportedDevices & mAttachedOutputDevices));
                        if (mPrimaryOutput == 0 && outProfile->mFlags & AUDIO_OUTPUT_FLAG_PRIMARY) {
                            mPrimaryOutput = output;
                        }
                        //将输出描述符对象AudioOutputDescriptor及创建的PlaybackThread线程id以键值对形式保存
                        addOutput(output, outputDesc);
                        //设置默认输出设备
                        setOutputDevice(output,(audio_devices_t)(mDefaultOutputDevice & outProfile->mSupportedDevices),true);
                    }
                }
            }
        }
        ALOGE_IF((mAttachedOutputDevices & ~mAvailableOutputDevices),
                 "Not output found for attached devices %08x",
                 (mAttachedOutputDevices & ~mAvailableOutputDevices));
        ALOGE_IF((mPrimaryOutput == 0), "Failed to open primary output");
        updateDevicesAndOutputs();
    
        //  add for bug158794 start
        char bootvalue[PROPERTY_VALUE_MAX];
        // prop sys.boot_completed will set 1 when system ready (ActivityManagerService.java)...
        property_get("sys.boot_completed", bootvalue, "");
        if (strncmp("1", bootvalue, 1) != 0) {
            startReadingThread();
        }
        // add for bug158794 end
    
    #ifdef AUDIO_POLICY_TEST
        ...
    #endif //AUDIO_POLICY_TEST
    }
    

    AudioPolicyManagerBase对象构造过程中主要完成以下几个步骤:

    1、 loadAudioPolicyConfig(AUDIO_POLICY_CONFIG_FILE)加载audio_policy.conf配置文件;

    2、 initializeVolumeCurves()初始化各种音频流对应的音量调节点;

    3、 加载audio policy硬件抽象库:mpClientInterface->loadHwModule(mHwModules[i]->mName)

    4、 打开attached_output_devices输出:

    mpClientInterface->openOutput();

    5、 保存输出设备描述符对象:addOutput(output, outputDesc);

    读取audio_policy.conf文件

    Android为每种音频接口定义了对应的硬件抽象层,且编译为单独的so库。

    每种音频接口定义了不同的输入输出,一个接口可以具有多个输入或者输出,每个输入输出有可以支持不同的音频设备。通过读取audio_policy.conf文件可以获取系统支持的音频接口参数。

    audio_policy.conf文件定义了两种音频配置信息:

    1、 当前系统支持的音频输入输出设备及默认输入输出设备;

    这些信息时通过global_configuration配置项来设置,在global_configuration中定义了三种音频设备信息:

    attached_output_devices:已连接的输出设备;

    default_output_device:默认输出设备;

    attached_input_devices:已连接的输入设备;

    1、 系统支持的音频接口信息;

    audio_policy.conf定义了系统支持的所有音频接口参数信息,比如primary、a2dp、usb等,对于primary定义如下:

    a2dp定义:

    usb定义:

    每种音频接口包含输入输出,每种输入输出又包含多种输入输出配置,每种输入输出配置又支持多种音频设备。AudioPolicyManagerBase首先加载/vendor/etc/audio_policy.conf,如果该文件不存在,则加/system/etc/audio_policy.conf。

    status_t AudioPolicyManagerBase::loadAudioPolicyConfig(const char *path)
    {
        cnode *root;
        char *data;
        data = (char *)load_file(path, NULL);
        if (data == NULL) {
            return -ENODEV;
        }
        root = config_node("", "");
        //读取配置文件
        config_load(root, data);
        //解析global_configuration
        loadGlobalConfig(root);
        //解析audio_hw_modules
        loadHwModules(root);
        config_free(root);
        free(root);
        free(data);
        ALOGI("loadAudioPolicyConfig() loaded %s
    ", path);
        return NO_ERROR;
    }
    

    通过loadGlobalConfig(root)函数来读取这些全局配置信息。

    void AudioPolicyManagerBase::loadGlobalConfig(cnode *root)
    {
        cnode *node = config_find(root, GLOBAL_CONFIG_TAG);
        if (node == NULL) {
            return;
        }
        node = node->first_child;
        while (node) {
        	//attached_output_devices AUDIO_DEVICE_OUT_EARPIECE
            if (strcmp(ATTACHED_OUTPUT_DEVICES_TAG, node->name) == 0) {
                mAttachedOutputDevices = parseDeviceNames((char *)node->value);
                ALOGW_IF(mAttachedOutputDevices == AUDIO_DEVICE_NONE,
                        "loadGlobalConfig() no attached output devices");
                ALOGV("loadGlobalConfig()mAttachedOutputDevices%04x", mAttachedOutputDevices);
            //default_output_device AUDIO_DEVICE_OUT_SPEAKER
            } else if (strcmp(DEFAULT_OUTPUT_DEVICE_TAG, node->name) == 0) {
                mDefaultOutputDevice= (audio_devices_t)stringToEnum(sDeviceNameToEnumTable,ARRAY_SIZE(sDeviceNameToEnumTable),(char *)node->value);
                ALOGW_IF(mDefaultOutputDevice == AUDIO_DEVICE_NONE,
                        "loadGlobalConfig() default device not specified");
                ALOGV("loadGlobalConfig() mDefaultOutputDevice %04x", mDefaultOutputDevice);
            //attached_input_devices AUDIO_DEVICE_IN_BUILTIN_MIC
            } else if (strcmp(ATTACHED_INPUT_DEVICES_TAG, node->name) == 0) {
                mAvailableInputDevices = parseDeviceNames((char *)node->value) & ~AUDIO_DEVICE_BIT_IN;
                ALOGV("loadGlobalConfig() mAvailableInputDevices %04x", mAvailableInputDevices);
            //speaker_drc_enabled 
            } else if (strcmp(SPEAKER_DRC_ENABLED_TAG, node->name) == 0) {
                mSpeakerDrcEnabled = stringToBool((char *)node->value);
                ALOGV("loadGlobalConfig() mSpeakerDrcEnabled = %d", mSpeakerDrcEnabled);
            }
            node = node->next;
        }
    }
    

    audio_policy.conf同时定义了多个audio 接口,每一个audio 接口包含若干output和input,而每个output和input又同时支持多种输入输出模式,每种输入输出模式又支持若干种设备。

    通过loadHwModules ()函数来加载系统配置的所有audio 接口:

    void AudioPolicyManagerBase::loadHwModules(cnode *root)
    {
    	//audio_hw_modules
        cnode *node = config_find(root, AUDIO_HW_MODULE_TAG);
        if (node == NULL) {
            return;
        }
        node = node->first_child;
        while (node) {
            ALOGV("loadHwModules() loading module %s", node->name);
            //加载音频接口
            loadHwModule(node);
            node = node->next;
        }
    }
    

    由于audio_policy.conf可以定义多个音频接口,因此该函数循环调用loadHwModule()来解析每个音频接口参数信息。Android定义HwModule类来描述每一个audio 接口参数,定义IOProfile类来描述输入输出模式配置。

    到此就将audio_policy.conf文件中音频接口配置信息解析到了AudioPolicyManagerBase的成员变量mHwModules、mAttachedOutputDevices、mDefaultOutputDevice、mAvailableInputDevices中。

    初始化音量调节点

    音量调节点设置在Android4.1与Android4.4中的实现完全不同,在Android4.1中是通过VolumeManager服务来管理,通过devicevolume.xml文件来配置,但Android4.4取消了VolumeManager服务,将音量控制放到AudioPolicyManagerBase中。在AudioPolicyManagerBase中定义了音量调节对应的音频流描述符数组:

    StreamDescriptor mStreams[AudioSystem::NUM_STREAM_TYPES];

    initializeVolumeCurves()函数就是初始化该数组元素:

    void AudioPolicyManagerBase::initializeVolumeCurves()
    {
        for (int i = 0; i < AUDIO_STREAM_CNT; i++) {
            for (int j = 0; j < DEVICE_CATEGORY_CNT; j++) {
                mStreams[i].mVolumeCurve[j] =
                        sVolumeProfiles[i][j];
            }
        }
    
        // Check availability of DRC on speaker path: if available, override some of the speaker curves
        if (mSpeakerDrcEnabled) {
    mStreams[AUDIO_STREAM_SYSTEM].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =
                    sDefaultSystemVolumeCurveDrc;
    mStreams[AUDIO_STREAM_RING].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =
                    sSpeakerSonificationVolumeCurveDrc;
    mStreams[AUDIO_STREAM_ALARM].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =
                    sSpeakerSonificationVolumeCurveDrc;
    mStreams[AUDIO_STREAM_NOTIFICATION].mVolumeCurve[DEVICE_CATEGORY_SPEAKER] =sSpeakerSonificationVolumeCurveDrc;
        }
    }
    

    sVolumeProfiles数组定义了不同音频设备下不同音频流对应的音量调节档位,定义如下:

    数组元素为音量调节档位,每种模式下的音量调节都包含4个档位,定义如下:

    加载audio_module模块

    AudioPolicyManager通过读取audio_policy.conf配置文件,可以知道系统当前支持那些音频接口以及attached的输入输出设备、默认输出设备。接下来就需要加载这些音频接口的硬件抽象库。

    这三中音频接口硬件抽象定义如下:

    /vendor/sprd/open-source/libs/audio/audio_hw.c 【audio.primary.scx15.so】

    struct audio_module HAL_MODULE_INFO_SYM = {
        .common = {
            .tag = HARDWARE_MODULE_TAG,
            .module_api_version = AUDIO_MODULE_API_VERSION_0_1,
            .hal_api_version = HARDWARE_HAL_API_VERSION,
            .id = AUDIO_HARDWARE_MODULE_ID,
            .name = "Spreadtrum Audio HW HAL",
            .author = "The Android Open Source Project",
            .methods = &hal_module_methods,
        },
    };
    

     

    external/bluetooth/bluedroid/audio_a2dp_hw/audio_a2dp_hw.c【audio.a2dp.default.so】

    struct audio_module HAL_MODULE_INFO_SYM = {
        .common = {
            .tag = HARDWARE_MODULE_TAG,
            .version_major = 1,
            .version_minor = 0,
            .id = AUDIO_HARDWARE_MODULE_ID,
            .name = "A2DP Audio HW HAL",
            .author = "The Android Open Source Project",
            .methods = &hal_module_methods,
        },
    };
    

    hardware/libhardware/modules/usbaudio/audio_hw.c【audio. usb.default.so】

    struct audio_module HAL_MODULE_INFO_SYM = {
        .common = {
            .tag = HARDWARE_MODULE_TAG,
            .module_api_version = AUDIO_MODULE_API_VERSION_0_1,
            .hal_api_version = HARDWARE_HAL_API_VERSION,
            .id = AUDIO_HARDWARE_MODULE_ID,
            .name = "USB audio HW HAL",
            .author = "The Android Open Source Project",
            .methods = &hal_module_methods,
        },
    };
    

    AudioPolicyClientInterface提供了加载音频接口硬件抽象库的接口函数,通过前面的介绍,我们知道,AudioPolicyCompatClient通过代理audio_policy_service_ops实现AudioPolicyClientInterface接口。

    hardwarelibhardware_legacyaudio AudioPolicyCompatClient.cpp

    audio_module_handle_t AudioPolicyCompatClient::loadHwModule(const char *moduleName)
    {
        return mServiceOps->load_hw_module(mService, moduleName);
    }
    

    AudioPolicyCompatClient将音频模块加载工作交给audio_policy_service_ops

    frameworksavservicesaudioflinger AudioPolicyService.cpp

    static audio_module_handle_t aps_load_hw_module(void *service,const char *name)
    {
        sp af = AudioSystem::get_audio_flinger();
        if (af == 0) {
            ALOGW("%s: could not get AudioFlinger", __func__);
            return 0;
        }
        return af->loadHwModule(name);
    }
    

    AudioPolicyService又将其转交给AudioFlinger

    frameworksavservicesaudioflinger AudioFlinger.cpp

    audio_module_handle_t AudioFlinger::loadHwModule(const char *name)
    {
        if (!settingsAllowed()) {
            return 0;
        }
        Mutex::Autolock _l(mLock);
        return loadHwModule_l(name);
    }
    

     

    audio_module_handle_t AudioFlinger::loadHwModule_l(const char *name)
    {
        for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
            if (strncmp(mAudioHwDevs.valueAt(i)->moduleName(), name, strlen(name)) == 0) {
                ALOGW("loadHwModule() module %s already loaded", name);
                return mAudioHwDevs.keyAt(i);
            }
        }
    audio_hw_device_t *dev; 
    //加载音频接口对应的so库,得到对应的音频接口设备audio_hw_device_t
        int rc = load_audio_interface(name, &dev);
        if (rc) {
            ALOGI("loadHwModule() error %d loading module %s ", rc, name);
            return 0;
        }
        mHardwareStatus = AUDIO_HW_INIT;
        rc = dev->init_check(dev);
        mHardwareStatus = AUDIO_HW_IDLE;
        if (rc) {
            ALOGI("loadHwModule() init check error %d for module %s ", rc, name);
            return 0;
        }
        if ((mMasterVolumeSupportLvl != MVS_NONE) &&
            (NULL != dev->set_master_volume)) {
            AutoMutex lock(mHardwareLock);
            mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME;
            dev->set_master_volume(dev, mMasterVolume);
            mHardwareStatus = AUDIO_HW_IDLE;
        }
        audio_module_handle_t handle = nextUniqueId();
        mAudioHwDevs.add(handle, new AudioHwDevice(name, dev));
        ALOGI("loadHwModule() Loaded %s audio interface from %s (%s) handle %d",
              name, dev->common.module->name, dev->common.module->id, handle);
        return handle;
    }
    

    函数首先加载系统定义的音频接口对应的so库,并打开该音频接口的抽象硬件设备audio_hw_device_t,为每个音频接口设备生成独一无二的ID号,同时将打开的音频接口设备封装为AudioHwDevice对象,将系统中所有的音频接口设备保存到AudioFlinger的成员变量mAudioHwDevs中。

    函数load_audio_interface根据音频接口名称来打开抽象的音频接口设备audio_hw_device_t。

    static int load_audio_interface(const char *if_name, audio_hw_device_t **dev)
    {
        const hw_module_t *mod;
    int rc;
    //根据名字加载audio_module模块
        rc = hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, if_name, &mod);
        ALOGE_IF(rc, "%s couldn't load audio hw module %s.%s (%s)", __func__,
                     AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));
        if (rc) {
            goto out;
    }
    //打开audio_device设备
        rc = audio_hw_device_open(mod, dev);
        ALOGE_IF(rc, "%s couldn't open audio hw device in %s.%s (%s)", __func__,
                     AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));
        if (rc) {
            goto out;
        }
        if ((*dev)->common.version != AUDIO_DEVICE_API_VERSION_CURRENT) {
            ALOGE("%s wrong audio hw device version %04x", __func__, (*dev)->common.version);
            rc = BAD_VALUE;
            goto out;
        }
        return 0;
    out:
        *dev = NULL;
        return rc;
    }
    

    hardwarelibhardwareincludehardware Audio.h

    static inline int audio_hw_device_open(const struct hw_module_t* module,
                                           struct audio_hw_device** device)
    {
        return module->methods->open(module, AUDIO_HARDWARE_INTERFACE,
                                     (struct hw_device_t**)device);
    }
    

    hardwarelibhardware_legacyaudio audio_hw_hal.cpp

    static int legacy_adev_open(const hw_module_t* module, const char* name,
                                hw_device_t** device)
    {
        struct legacy_audio_device *ladev;
        int ret;
        if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0)
            return -EINVAL;
        ladev = (struct legacy_audio_device *)calloc(1, sizeof(*ladev));
        if (!ladev)
            return -ENOMEM;
        ladev->device.common.tag = HARDWARE_DEVICE_TAG;
        ladev->device.common.version = AUDIO_DEVICE_API_VERSION_1_0;
        ladev->device.common.module = const_cast<hw_module_t*>(module);
        ladev->device.common.close = legacy_adev_close;
        ladev->device.get_supported_devices = adev_get_supported_devices;
    …
    ladev->device.dump = adev_dump;
        ladev->hwif = createAudioHardware();
        if (!ladev->hwif) {
            ret = -EIO;
            goto err_create_audio_hw;
        }
        *device = &ladev->device.common;
        return 0;
    err_create_audio_hw:
        free(ladev);
        return ret;
    }
    

    打开音频接口设备过程其实就是构造并初始化legacy_audio_device对象过程,legacy_audio_device数据结构关系如下:

    legacy_adev_open函数就是创建并初始化一个legacy_audio_device对象:

     

    到此就加载完系统定义的所有音频接口,并生成相应的数据对象,如下图所示:

    打开音频输出

    AudioPolicyService加载完所有音频接口后,就知道了系统支持的所有音频接口参数,可以为音频输出提供决策。

    为了能正常播放音频数据,需要创建抽象的音频输出接口对象,打开音频输出过程如下:

    audio_io_handle_t AudioPolicyCompatClient::openOutput(audio_module_handle_t module,
                                                  audio_devices_t *pDevices,
                                                  uint32_t *pSamplingRate,
                                                  audio_format_t *pFormat,
                                                  audio_channel_mask_t *pChannelMask,  
                                                  uint32_t *pLatencyMs,
                                                  audio_output_flags_t flags,
                                                  const audio_offload_info_t *offloadInfo)
    {
        return mServiceOps->open_output_on_module(mService,module, pDevices, pSamplingRate,
                                                  pFormat, pChannelMask, pLatencyMs,
                                                  flags, offloadInfo);
    }
    

     

    static audio_io_handle_t aps_open_output_on_module(void *service,
                                              audio_module_handle_t module,
                                              audio_devices_t *pDevices,
                                              uint32_t *pSamplingRate,
                                              audio_format_t *pFormat,
                                              audio_channel_mask_t *pChannelMask,
                                              uint32_t *pLatencyMs,
                                              audio_output_flags_t flags,
                                              const audio_offload_info_t *offloadInfo)
    {
        sp af = AudioSystem::get_audio_flinger();
        if (af == 0) {
            ALOGW("%s: could not get AudioFlinger", __func__);
            return 0;
        }
        return af->openOutput(module, pDevices, pSamplingRate, pFormat, pChannelMask,
                              pLatencyMs, flags, offloadInfo);
    }
    



    audio_io_handle_t AudioFlinger::openOutput(audio_module_handle_t module,
                                               audio_devices_t *pDevices,
                                               uint32_t *pSamplingRate,
                                               audio_format_t *pFormat,
                                               audio_channel_mask_t *pChannelMask,
                                               uint32_t *pLatencyMs,
                                               audio_output_flags_t flags,
                                               const audio_offload_info_t *offloadInfo)
    {
        PlaybackThread *thread = NULL;
        struct audio_config config;
        config.sample_rate = (pSamplingRate != NULL) ? *pSamplingRate : 0;
        config.channel_mask = (pChannelMask != NULL) ? *pChannelMask : 0;
        config.format = (pFormat != NULL) ? *pFormat : AUDIO_FORMAT_DEFAULT;
        if (offloadInfo) {
            config.offload_info = *offloadInfo;
        }
    	//创建一个音频输出流对象audio_stream_out_t
        audio_stream_out_t *outStream = NULL;
        AudioHwDevice *outHwDev;
        ALOGV("openOutput(), module %d Device %x, SamplingRate %d, Format %#08x, Channels %x, flags %x",
                  module,
                  (pDevices != NULL) ? *pDevices : 0,
                  config.sample_rate,
                  config.format,
                  config.channel_mask,
                  flags);
        ALOGV("openOutput(), offloadInfo %p version 0x%04x",
              offloadInfo, offloadInfo == NULL ? -1 : offloadInfo->version );
        if (pDevices == NULL || *pDevices == 0) {
            return 0;
        }
        Mutex::Autolock _l(mLock);
    	//从音频接口列表mAudioHwDevs中查找出对应的音频接口,如果找不到,则重新加载音频接口动态库
        outHwDev = findSuitableHwDev_l(module, *pDevices);
        if (outHwDev == NULL)
            return 0;
    	//取出module对应的audio_hw_device_t设备
        audio_hw_device_t *hwDevHal = outHwDev->hwDevice();
    	//为音频输出流生成一个独一无二的id号
        audio_io_handle_t id = nextUniqueId();
        mHardwareStatus = AUDIO_HW_OUTPUT_OPEN;
    	//打开音频输出流
        status_t status = hwDevHal->open_output_stream(hwDevHal,
                                              id,
                                              *pDevices,
                                              (audio_output_flags_t)flags,
                                              &config,
                                              &outStream);
        mHardwareStatus = AUDIO_HW_IDLE;
        ALOGV("openOutput() openOutputStream returned output %p, SamplingRate %d, Format %#08x, "
                "Channels %x, status %d",
                outStream,
                config.sample_rate,
                config.format,
                config.channel_mask,
                status);
        if (status == NO_ERROR && outStream != NULL) {
    		//使用AudioStreamOut来封装音频输出流audio_stream_out_t
            AudioStreamOut *output = new AudioStreamOut(outHwDev, outStream, flags);
    		//根据flag标志位,创建不同类型的线程
            if (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
                thread = new OffloadThread(this, output, id, *pDevices);
                ALOGV("openOutput() created offload output: ID %d thread %p", id, thread);
            } else if ((flags & AUDIO_OUTPUT_FLAG_DIRECT) ||
                (config.format != AUDIO_FORMAT_PCM_16_BIT) ||
                (config.channel_mask != AUDIO_CHANNEL_OUT_STEREO)) {
                thread = new DirectOutputThread(this, output, id, *pDevices);
                ALOGV("openOutput() created direct output: ID %d thread %p", id, thread);
            } else {
                thread = new MixerThread(this, output, id, *pDevices);
                ALOGV("openOutput() created mixer output: ID %d thread %p", id, thread);
            }
    		//将创建的线程及id以键值对的形式保存在mPlaybackThreads中
            mPlaybackThreads.add(id, thread);
            if (pSamplingRate != NULL) {
                *pSamplingRate = config.sample_rate;
            }
            if (pFormat != NULL) {
                *pFormat = config.format;
            }
            if (pChannelMask != NULL) {
                *pChannelMask = config.channel_mask;
            }
            if (pLatencyMs != NULL) {
                *pLatencyMs = thread->latency();
            }
            // notify client processes of the new output creation
            thread->audioConfigChanged_l(AudioSystem::OUTPUT_OPENED);
            // the first primary output opened designates the primary hw device
            if ((mPrimaryHardwareDev == NULL) && (flags & AUDIO_OUTPUT_FLAG_PRIMARY)) {
                ALOGI("Using module %d has the primary audio interface", module);
                mPrimaryHardwareDev = outHwDev;
                AutoMutex lock(mHardwareLock);
                mHardwareStatus = AUDIO_HW_SET_MODE;
                hwDevHal->set_mode(hwDevHal, mMode);
                mHardwareStatus = AUDIO_HW_IDLE;
            }
            return id;
        }
        return 0;
    }
    

    打开音频输出流过程其实就是创建AudioStreamOut对象及PlaybackThread线程过程。首先通过抽象的音频接口设备audio_hw_device_t来创建输出流对象legacy_stream_out。

    static int adev_open_output_stream(struct audio_hw_device *dev,
                                       audio_io_handle_t handle,
                                       audio_devices_t devices,
                                       audio_output_flags_t flags,
                                       struct audio_config *config,
                                       struct audio_stream_out **stream_out)
    {
        struct legacy_audio_device *ladev = to_ladev(dev);
        status_t status;
        struct legacy_stream_out *out;
    int ret;
    //分配一个legacy_stream_out对象
        out = (struct legacy_stream_out *)calloc(1, sizeof(*out));
        if (!out)
            return -ENOMEM;
    devices = convert_audio_device(devices, HAL_API_REV_2_0, HAL_API_REV_1_0);
    //创建AudioStreamOut对象
        out->legacy_out = ladev->hwif->openOutputStream(devices, (int *) &config->format,
                                                        &config->channel_mask,
                                                        &config->sample_rate, &status);
        if (!out->legacy_out) {
            ret = status;
            goto err_open;
    }
    //初始化成员变量audio_stream
        out->stream.common.get_sample_rate = out_get_sample_rate;
        …
        *stream_out = &out->stream;
        return 0;
    err_open:
        free(out);
        *stream_out = NULL;
        return ret;
    }
    

    由于legacy_audio_device的成员变量hwif的类型为AudioHardwareInterface,因此通过调用AudioHardwareInterface的接口openOutputStream()来创建AudioStreamOut对象。

    AudioStreamOut* AudioHardwareStub::openOutputStream(
            uint32_t devices, int *format, uint32_t *channels, uint32_t *sampleRate, status_t *status)
    {
        AudioStreamOutStub* out = new AudioStreamOutStub();
        status_t lStatus = out->set(format, channels, sampleRate);
        if (status) {
            *status = lStatus;
        }
        if (lStatus == NO_ERROR)
            return out;
        delete out;
        return 0;
    }
    

     

    打开音频输出后,在AudioFlinger与AudioPolicyService中的表现形式如下:

    打开音频输入

    audio_io_handle_t AudioPolicyCompatClient::openInput(audio_module_handle_t module,
                                                 audio_devices_t *pDevices,
                                                 uint32_t *pSamplingRate,
                                                 audio_format_t *pFormat,
                                                 audio_channel_mask_t *pChannelMask)
    {
        return mServiceOps->open_input_on_module(mService, module, pDevices,pSamplingRate, pFormat, pChannelMask);
    }
    
    static audio_io_handle_t aps_open_input_on_module(void *service,
                                           audio_module_handle_t module,
                                           audio_devices_t *pDevices,
                                           uint32_t *pSamplingRate,
                                           audio_format_t *pFormat,
                                           audio_channel_mask_t *pChannelMask)
    {
        sp af = AudioSystem::get_audio_flinger();
        if (af == 0) {
            ALOGW("%s: could not get AudioFlinger", __func__);
            return 0;
        }
        return af->openInput(module, pDevices, pSamplingRate, pFormat, pChannelMask);
    }
    

    audio_io_handle_t AudioFlinger::openInput(audio_module_handle_t module,
                                              audio_devices_t *pDevices,
                                              uint32_t *pSamplingRate,
                                              audio_format_t *pFormat,
                                              audio_channel_mask_t *pChannelMask)
    {
        status_t status;
        RecordThread *thread = NULL;
        struct audio_config config;
        config.sample_rate = (pSamplingRate != NULL) ? *pSamplingRate : 0;
        config.channel_mask = (pChannelMask != NULL) ? *pChannelMask : 0;
        config.format = (pFormat != NULL) ? *pFormat : AUDIO_FORMAT_DEFAULT;
    
        uint32_t reqSamplingRate = config.sample_rate;
        audio_format_t reqFormat = config.format;
        audio_channel_mask_t reqChannels = config.channel_mask;
        audio_stream_in_t *inStream = NULL;
        AudioHwDevice *inHwDev;
        if (pDevices == NULL || *pDevices == 0) {
            return 0;
        }
        Mutex::Autolock _l(mLock);
        inHwDev = findSuitableHwDev_l(module, *pDevices);
        if (inHwDev == NULL)
            return 0;
        audio_hw_device_t *inHwHal = inHwDev->hwDevice();
        audio_io_handle_t id = nextUniqueId();
        status = inHwHal->open_input_stream(inHwHal, id, *pDevices, &config,&inStream);
        ALOGV("openInput() openInputStream returned input %p, SamplingRate %d, Format %d, Channels %x, "
                "status %d",
                inStream,
                config.sample_rate,
                config.format,
                config.channel_mask,
                status);
    
        // If the input could not be opened with the requested parameters and we can handle the
        // conversion internally, try to open again with the proposed parameters. The AudioFlinger can
        // resample the input and do mono to stereo or stereo to mono conversions on 16 bit PCM inputs.
        if (status == BAD_VALUE &&reqFormat == config.format && config.format == AUDIO_FORMAT_PCM_16_BIT && (config.sample_rate <= 2 * reqSamplingRate) &&
            (popcount(config.channel_mask) <= FCC_2) && (popcount(reqChannels) <= FCC_2)) {
            ALOGV("openInput() reopening with proposed sampling rate and channel mask");
            inStream = NULL;
            status = inHwHal->open_input_stream(inHwHal, id, *pDevices, &config, &inStream);
        }
    
        if (status == NO_ERROR && inStream != NULL) {
    
    #ifdef TEE_SINK
            // Try to re-use most recently used Pipe to archive a copy of input for dumpsys,
            // or (re-)create if current Pipe is idle and does not match the new format
          ...
    #endif
            AudioStreamIn *input = new AudioStreamIn(inHwDev, inStream);
            // Start record thread
            // RecordThread requires both input and output device indication to forward to audio
            // pre processing modules
            thread = new RecordThread(this,
                                      input,
                                      reqSamplingRate,
                                      reqChannels,
                                      id,
                                      primaryOutputDevice_l(),
                                      *pDevices
    #ifdef TEE_SINK
                                      , teeSink
    #endif
                                      );
            mRecordThreads.add(id, thread);
            ALOGV("openInput() created record thread: ID %d thread %p", id, thread);
            if (pSamplingRate != NULL) {
                *pSamplingRate = reqSamplingRate;
            }
            if (pFormat != NULL) {
                *pFormat = config.format;
            }
            if (pChannelMask != NULL) {
                *pChannelMask = reqChannels;
            }
            // notify client processes of the new input creation
            thread->audioConfigChanged_l(AudioSystem::INPUT_OPENED);
            return id;
        }
        return 0;
    }
    

    打开音频输入流过程其实就是创建AudioStreamIn对象及RecordThread线程过程。首先通过抽象的音频接口设备audio_hw_device_t来创建输出流对象legacy_stream_in。

    static int adev_open_input_stream(struct audio_hw_device *dev,
                                      audio_io_handle_t handle,
                                      audio_devices_t devices,
                                      struct audio_config *config,
                                      struct audio_stream_in **stream_in)
    {
        struct legacy_audio_device *ladev = to_ladev(dev);
        status_t status;
        struct legacy_stream_in *in;
        int ret;
        in = (struct legacy_stream_in *)calloc(1, sizeof(*in));
        if (!in)
            return -ENOMEM;
        devices = convert_audio_device(devices, HAL_API_REV_2_0, HAL_API_REV_1_0);
        in->legacy_in = ladev->hwif->openInputStream(devices, (int *) &config->format,
                                           &config->channel_mask,
                                           &config->sample_rate,
                                           &status, (AudioSystem::audio_in_acoustics)0);
        if (!in->legacy_in) {
            ret = status;
            goto err_open;
        }
        in->stream.common.get_sample_rate = in_get_sample_rate;
    	…
        *stream_in = &in->stream;
        return 0;
    err_open:
        free(in);
        *stream_in = NULL;
        return ret;
    }
    
    AudioStreamIn* AudioHardwareStub::openInputStream(
            uint32_t devices, int *format, uint32_t *channels, uint32_t *sampleRate,
            status_t *status, AudioSystem::audio_in_acoustics acoustics)
    {
        // check for valid input source
        if (!AudioSystem::isInputDevice((AudioSystem::audio_devices)devices)) {
            return 0;
        }
        AudioStreamInStub* in = new AudioStreamInStub();
        status_t lStatus = in->set(format, channels, sampleRate, acoustics);
        if (status) {
            *status = lStatus;
        }
        if (lStatus == NO_ERROR)
            return in;
        delete in;
        return 0;
    }
    

    打开音频输入创建了以下legacy_stream_in对象:

    打开音频输入后,在AudioFlinger与AudioPolicyService中的表现形式如下:

    当AudioPolicyManagerBase构造时,它会根据用户提供的audio_policy.conf来分析系统中有哪些audio接口(primary,a2dp以及usb),然后通过AudioFlinger::loadHwModule加载各audio接口对应的库文件,并依次打开其中的output(openOutput)和input(openInput):

    ->打开音频输出时创建一个audio_stream_out通道,并创建AudioStreamOut对象以及新建PlaybackThread播放线程。

    -> 打开音频输入时创建一个audio_stream_in通道,并创建AudioStreamIn对象以及创建RecordThread录音线程。

  • 相关阅读:
    浅读《构建之法》随笔
    个人学期总结
    201571030305/201571030306《小学生四则运算需求分析结对报告》
    小学生四则运算结对项目
    小学生四则运算
    读《构建之法》提出的问题
    个人学期总结
    实验四 小学生四则运算需求分析结对报告
    四则运算结对项目
    四则运算 201571030317
  • 原文地址:https://www.cnblogs.com/senior-engineer/p/5089559.html
Copyright © 2020-2023  润新知