• Choosing number 写出递推公式,然后用矩阵的快速幂。


    Description

    There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

    And you need to calculate how many ways they can choose the numbers obeying the rule.

    Input

    There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

    Output

    One line for each case. The number of ways module 1000000007.

    Sample Input

    4 4 1
    

    Sample Output

    216
    ***********************************************************************************************************************************************************
    矩阵的快速幂dp[n][1]即取>=k的数时的方案总数,dp[n][2]即取<k时的方案总数
    dp[n][1]=dp[n-1][1]*(m-k)+dp[n-1][2]*(m-k);
    dp[n][2]=dp[n-1]*k+dp[n-1][2]*(k-1);
    列出矩阵
    : m-k m-k dp[n-1][1] dp[n][1]
    k k-1 dp[n-1][2] dp[n][2]
    可得由矩阵的快速幂快速求解
    ***********************************************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 #include<algorithm>
     7 #define LL long long
     8 #define MOD 1000000007
     9 using namespace std;
    10 LL n,m,k;
    11 LL save[5][5];
    12 LL mod(LL m,LL n)
    13 {
    14     LL sum=1;
    15     while(n)
    16     {
    17         if(n&1)
    18            sum=(sum*m)%MOD;
    19         m=(m*m)%MOD;
    20         n=n>>1;
    21     }
    22     return sum;
    23 }
    24 int main()
    25 {
    26     while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
    27     {
    28         if(k==0)
    29         {
    30             printf("%lld
    ",mod(m,n)%MOD);
    31             continue;
    32         }
    33         if(n==1)
    34         {
    35             printf("%lld
    ",m);
    36             continue;
    37         }
    38         save[1][1]=m-k;
    39         save[1][2]=m-k;
    40         save[2][1]=k;
    41         save[2][2]=k-1;
    42         LL ans1=m-k;
    43         LL ans2=k;
    44         n--;
    45         while(n)
    46         {
    47             if(n&1)
    48             {
    49                 LL temp1=(((ans1*save[1][1])%MOD)+((ans2*save[1][2])%MOD))%MOD;
    50                 LL temp2=(((ans1*save[2][1])%MOD)+((ans2*save[2][2])%MOD))%MOD;
    51                 ans1=temp1;
    52                 ans2=temp2;
    53             }
    54             n=n>>1;
    55             LL a1=(((save[1][1]*save[1][1])%MOD)+((save[1][2]*save[2][1])%MOD))%MOD;
    56             LL a2=(((save[1][2]*save[2][2])%MOD)+((save[1][1]*save[1][2])%MOD))%MOD;
    57             LL b1=(((save[2][2]*save[2][1])%MOD)+((save[2][1]*save[1][1])%MOD))%MOD;
    58             LL b2=(((save[2][2]*save[2][2])%MOD)+((save[2][1]*save[1][2])%MOD))%MOD;
    59             save[1][1]=a1; save[1][2]=a2;
    60             save[2][1]=b1; save[2][2]=b2;
    61 
    62         }
    63         printf("%lld
    ",(ans1+ans2)%MOD);
    64     }
    65     return 0;
    66 }
    View Code
  • 相关阅读:
    hdu 1023 卡特兰数+高精度
    hdu 1568 Fibonacci 快速幂
    hdu 3054 Fibonacci 找循环节的公式题
    hdu 5167 Fibonacci 打表
    hdu 4165 Pills dp
    HDU 5791 Two DP
    BZOJ 2152: 聪聪可可 树分治
    HDU 5213 Lucky 莫队+容斥
    HDU 5145 NPY and girls 莫队+逆元
    BZOJ 3289: Mato的文件管理 莫队+BIT
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3446454.html
Copyright © 2020-2023  润新知