• HDU 5791 Two DP


    Two

     

    Problem Description
     
    Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
     
    Input
     
    The input contains multiple test cases.

    For each test case, the first line cantains two integers N,M(1N,M1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
     
    Output
     
    For each test case, output the answer mod 1000000007.
     
    Sample Input
     
    3 2 1 2 3 2 1 3 2 1 2 3 1 2
     
    Sample Output
     
    2 3
     

    题意:

      给你两个数组

      问你有多少对公共子序列

    题解:

      设定dp[i][j] 表示以i结尾 j结尾的子序列的 答案数

      n^2的转移

       假设当前为 a[i] == b[j] , 那么它可以继承的 就是 所有 的 i,j组合 +1 

       a[i] != b[j] 则 当前dp[i][j] = 0 咯

      第一中继承 只需要利用前缀 优化就行

      最后统计答案的话 就是sum[n][m]咯

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    const int N = 1e3+10, M = 2e2+11, inf = 2e9, mod = 1e9+7;
    typedef long long ll;
    
    ll dp[N][N],sum[N][N],ans = 0;
    int a[N],b[N],n,m;
    int main()
    {
        while (scanf("%d%d", &n, &m)!=EOF) {
            for (int i=1;i<=n;i++) scanf("%d", &a[i]);
            for (int i=1;i<=m;i++) scanf("%d", &b[i]);
            memset(dp,0,sizeof(dp));
            memset(sum,0,sizeof(sum));
            for (int i=1;i<=n;i++)
                for (int j=1;j<=m;j++)
                if (a[i]==b[j]) {
                        
                    dp[i][j]=(sum[i-1][j-1]+1)%mod;
                    
                    sum[i][j]=(-sum[i-1][j-1]+dp[i][j]%mod+sum[i-1][j]%mod+sum[i][j-1])%mod;
                
                } else sum[i][j]=(-sum[i-1][j-1]%mod+sum[i-1][j]%mod+sum[i][j-1])%mod;
            ans=0;
            for (int i=1;i<=n;i++)
                for (int j=1;j<=m;j++) ans=(ans+dp[i][j])%mod;
            printf("%I64d
    ", (ans+mod)%mod);
        }
        return 0;
    }

       

  • 相关阅读:
    Android内存分析和调优(中)
    Android内存分析和调优(上)
    背包九讲之四:混合背包问题:01,完全,多重的混合
    背包九讲之三:多重背包问题:一个物品允许选有限次
    背包九讲之二:完全背包问题:一个物品允许选多次
    背包九讲之一:01背包问题:一个物品只允许选一次
    动态规划:最长递增子序列
    动态规划:采油区域
    Hankson的趣味题
    动态规划:传纸条
  • 原文地址:https://www.cnblogs.com/zxhl/p/5734144.html
Copyright © 2020-2023  润新知