Recursive sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Farmer
John likes to play mathematics games with his N cows. Recently, they
are attracted by recursive sequences. In each turn, the cows would stand
in a line, while John writes two positive numbers a and b on a
blackboard. And then, the cows would say their identity number one by
one. The first cow says the first number a and the second says the
second number b. After that, the i-th cow says the sum of twice the
(i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
Output
For
each test case, output the number of the N-th cow. This number might be
very large, so you need to output it modulo 2147493647.
Sample Input
2
3 1 2
4 1 10
Sample Output
85
369
Hint
In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.Source
套板子,取模开ll就好了;
#include<bits/stdc++.h> using namespace std; #define ll long long #define pi (4*atan(1.0)) #define eps 1e-14 const int N=2e5+10,M=1e6+10,inf=1e9+10; const ll INF=1e18+10,MOD=2147493647; struct Matrix { ll a[10][10]; Matrix() { memset(a,0,sizeof(a)); } void init() { for(int i=0;i<7;i++) for(int j=0;j<7;j++) a[i][j]=(i==j); } Matrix operator + (const Matrix &B)const { Matrix C; for(int i=0;i<7;i++) for(int j=0;j<7;j++) C.a[i][j]=(a[i][j]+B.a[i][j])%MOD; return C; } Matrix operator * (const Matrix &B)const { Matrix C; for(int i=0;i<7;i++) for(int k=0;k<7;k++) for(int j=0;j<7;j++) C.a[i][j]=(C.a[i][j]+(a[i][k]*B.a[k][j])%MOD)%MOD; return C; } Matrix operator ^ (const ll &t)const { Matrix A=(*this),res; res.init(); int p=t; while(p) { if(p&1)res=res*A; A=A*A; p>>=1; } return res; } }; Matrix base,hh; void init() { base.a[0][0]=1; base.a[1][0]=2; base.a[2][0]=1; base.a[0][1]=1; base.a[2][2]=1; base.a[3][2]=4; base.a[4][2]=6; base.a[5][2]=4; base.a[6][2]=1; base.a[3][3]=1; base.a[4][3]=3; base.a[5][3]=3; base.a[6][3]=1; base.a[4][4]=1; base.a[5][4]=2; base.a[6][4]=1; base.a[5][5]=1; base.a[6][5]=1; base.a[6][6]=1; } void init1(ll a,ll b) { memset(hh.a,0,sizeof(hh.a)); hh.a[0][0]=b%MOD; hh.a[0][1]=a%MOD; hh.a[0][2]=3*3*3*3; hh.a[0][3]=3*3*3; hh.a[0][4]=3*3; hh.a[0][5]=3; hh.a[0][6]=1; } int main() { init(); int T,cas=1; scanf("%d",&T); while(T--) { ll n,a,b; scanf("%lld%lld%lld",&n,&a,&b); init1(a,b); Matrix ans=(base^(n-2)); hh=hh*ans; printf("%lld ",hh.a[0][0]); } return 0; }