• hdu 5950 Recursive sequence 矩阵快速幂


    Recursive sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

    Problem Description
    Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
     
    Input
    The first line of input contains an integer t, the number of test cases. t test cases follow.
    Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
     
    Output
    For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
     
    Sample Input
    2 3 1 2 4 1 10
     
    Sample Output
    85 369
    Hint
    In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.
     
    Source
      套板子,取模开ll就好了;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-14
    const int N=2e5+10,M=1e6+10,inf=1e9+10;
    const ll INF=1e18+10,MOD=2147493647;
    struct Matrix
    {
        ll a[10][10];
        Matrix()
        {
            memset(a,0,sizeof(a));
        }
        void init()
        {
            for(int i=0;i<7;i++)
                for(int j=0;j<7;j++)
                    a[i][j]=(i==j);
        }
        Matrix operator + (const Matrix &B)const
        {
            Matrix C;
            for(int i=0;i<7;i++)
                for(int j=0;j<7;j++)
                    C.a[i][j]=(a[i][j]+B.a[i][j])%MOD;
            return C;
        }
        Matrix operator * (const Matrix &B)const
        {
            Matrix C;
            for(int i=0;i<7;i++)
                for(int k=0;k<7;k++)
                    for(int j=0;j<7;j++)
                        C.a[i][j]=(C.a[i][j]+(a[i][k]*B.a[k][j])%MOD)%MOD;
            return C;
        }
        Matrix operator ^ (const ll &t)const
        {
            Matrix A=(*this),res;
            res.init();
            int p=t;
            while(p)
            {
                if(p&1)res=res*A;
                A=A*A;
                p>>=1;
            }
            return res;
        }
    };
    Matrix base,hh;
    void init()
    {
        base.a[0][0]=1;
        base.a[1][0]=2;
        base.a[2][0]=1;
        base.a[0][1]=1;
        base.a[2][2]=1;
        base.a[3][2]=4;
        base.a[4][2]=6;
        base.a[5][2]=4;
        base.a[6][2]=1;
        base.a[3][3]=1;
        base.a[4][3]=3;
        base.a[5][3]=3;
        base.a[6][3]=1;
        base.a[4][4]=1;
        base.a[5][4]=2;
        base.a[6][4]=1;
        base.a[5][5]=1;
        base.a[6][5]=1;
        base.a[6][6]=1;
    }
    void init1(ll a,ll b)
    {
        memset(hh.a,0,sizeof(hh.a));
        hh.a[0][0]=b%MOD;
        hh.a[0][1]=a%MOD;
        hh.a[0][2]=3*3*3*3;
        hh.a[0][3]=3*3*3;
        hh.a[0][4]=3*3;
        hh.a[0][5]=3;
        hh.a[0][6]=1;
    }
    int main()
    {
        init();
        int T,cas=1;
        scanf("%d",&T);
        while(T--)
        {
            ll n,a,b;
            scanf("%lld%lld%lld",&n,&a,&b);
            init1(a,b);
            Matrix ans=(base^(n-2));
            hh=hh*ans;
            printf("%lld
    ",hh.a[0][0]);
        }
        return 0;
    }
  • 相关阅读:
    结对作业
    黄金分割点(第五周 c语言版)
    小程序(第四周)
    读程序作业(第三周)
    vs2013的安装及测试(第三周)
    学习进度条(第6周)
    努力爬的蜗牛
    学习日记1
    团队作业(七)
    团队作业(六)
  • 原文地址:https://www.cnblogs.com/jhz033/p/6017281.html
Copyright © 2020-2023  润新知