• sizeof()功能


    sizeof()功能:计算数据空间的字节数
    1.与strlen()比较
          strlen()计算字符数组的字符数,以"\0"为结束判断,不计算为'\0'的数组元素。
          而sizeof计算数据(包括数组、变量、类型、结构体等)所占内存空间,用字节数表示。
    2.指针与静态数组的sizeof操作
          指针均可看为变量类型的一种。所有指针变量的sizeof 操作结果均为4。
    注意:int *p;sizeof(p)=4;
                     但sizeof(*p)相当于sizeof(int);      
          对于静态数组,sizeof可直接计算数组大小;
          例:int a[10];char b[]="hello";
                  sizeof(a)等于4*10=40;
                 sizeof(b)等于6;
     注意:数组做型参时,数组名称当作指针使用!!
                   void fun(char p[])
                   {sizeof(p)等于4}    

    经典问题: 
          double*(*a)[3][6]; 
          cout<<sizeof(a)<<endl; //4 a为指针
          cout<<sizeof(*a)<<endl; //72 *a为一个有3*6个指针元素的数组
          cout<<sizeof(**a)<<endl; //24 **a为数组一维的6个指针
          cout<<sizeof(***a)<<endl; //4 ***a为一维的第一个指针
          cout<<sizeof(****a)<<endl; //8 ****a为一个double变量

    问题解析:a是一个很奇怪的定义,他表示一个指向double*[3][6]类型数组的指针。既然是指针,所以sizeof(a)就是4。 
          既然a是执行double*[3][6]类型的指针,*a就表示一个double*[3][6]的多维数组类型,因此sizeof(*a)=3*6*sizeof(double*)=72。同样的,**a表示一个double*[6]类型的数组,所以sizeof(**a)=6*sizeof  (double*)=24。***a就表示其中的一个元素,也就是double*了,所以sizeof(***a)=4。至于****a,就是一个double了,所以sizeof(****a)=sizeof(double)=8。 
    3.格式的写法
       sizeof操作符,对变量或对象可以不加括号,但若是类型,须加括号。
    4.使用sizeof时string的注意事项
       string s="hello";
       sizeof(s)等于string类的大小,sizeof(s.c_str())得到的是与字符串长度。
    5.union 与struct的空间计算
       总体上遵循两个原则:
       (1)整体空间是 占用空间最大的成员(的类型)所占字节数的整倍数
       (2)数据对齐原则----内存按结构成员的先后顺序排列,当排到该成员变量时,其前面已摆放的空间大小必须是该成员类型大小的整倍数,如果不够则补齐,以此向后类推。。。。。
       注意:数组按照单个变量一个一个的摆放,而不是看成整体。如果成员中有自定义的类、结构体,也要注意数组问题。
    例:[引用其他帖子的内容]
    因为对齐问题使结构体的sizeof变得比较复杂,看下面的例子:(默认对齐方式下)
    structs1
    {
    chara;
    doubleb;
    intc;
    chard; 
    };

    structs2
    {
    chara;
    charb;
    intc;
    doubled;
    };

    cout<<sizeof(s1)<<endl;// 24
    cout<<sizeof(s2)<<endl;// 16

     同样是两个char类型,一个int类型,一个double类型,但是因为对齐问题,导致他们的大小不同。计算结构体大小可以采用元素摆放法,我举例子说明一下:首先,CPU判断结构体的对界,根据上一节的结论,s1和s2的对界都取最大的元素类型,也就是double类型的对界8。然后开始摆放每个元素。
     对于s1,首先把a放到8的对界,假定是0,此时下一个空闲的地址是1,但是下一个元素d是double类型,要放到8的对界上,离1最接近的地址是8了,所以d被放在了8,此时下一个空闲地址变成了16,下一个元素c的对界是4,16可以满足,所以c放在了16,此时下一个空闲地址变成了20,下一个元素d需要对界1,也正好落在对界上,所以d放在了20,结构体在地址21处结束。由于s1的大小需要是8的倍数,所以21-23的空间被保留,s1的大小变成了24。
     对于s2,首先把a放到8的对界,假定是0,此时下一个空闲地址是1,下一个元素的对界也是1,所以b摆放在1,下一个空闲地址变成了2;下一个元素c的对界是4,所以取离2最近的地址4摆放c,下一个空闲地址变成了8,下一个元素d的对界是8,所以d摆放在8,所有元素摆放完毕,结构体在15处结束,占用总空间为16,正好是8的倍数。

     这里有个陷阱,对于结构体中的结构体成员,不要认为它的对齐方式就是他的大小,看下面的例子:
    structs1
    {
    chara[8];
    };

    structs2
    {
    doubled;
    };

    structs3
    {
    s1s;
    chara;
    };

    structs4
    {
    s2s;
    chara; 
    };
    cout<<sizeof(s1)<<endl;// 8
    cout<<sizeof(s2)<<endl;// 8
    cout<<sizeof(s3)<<endl;// 9
    cout<<sizeof(s4)<<endl;// 16;
     s1和s2大小虽然都是8,但是s1的对齐方式是1,s2是8(double),所以在s3和s4中才有这样的差异。
     所以,在自己定义结构体的时候,如果空间紧张的话,最好考虑对齐因素来排列结构体里的元素。

    补充:不要让double干扰你的位域
      在结构体和类中,可以使用位域来规定某个成员所能占用的空间,所以使用位域能在一定程度上节省结构体占用的空间。不过考虑下面的代码:

    struct s1 

     int i: 8; 
     int j: 4; 
     double b; 
     int a:3; 
    }; 

    struct s2 

     int i; 
     int j; 
     double b; 
     int a; 
    }; 

    struct s3 

     int i; 
     int j; 
     int a; 
     double b; 
    }; 

    struct s4 

     int i: 8; 
     int j: 4; 
     int a:3; 
     double b; 
    }; 

    cout<<sizeof(s1)<<endl; // 24 
    cout<<sizeof(s2)<<endl; // 24 
    cout<<sizeof(s3)<<endl; // 24 
    cout<<sizeof(s4)<<endl; // 16 
      可以看到,有double存在会干涉到位域(sizeof的算法参考上一节),所以使用位域的的时候,最好把float类型和double类型放在程序的开始或者最后。

    相关常数: 

    sizeof int:4
    sizeof short:2
    sizeof long:4
    sizeof float:4
    sizeof double:8
    sizeof char:1
    sizeof p:4
    sizeof WORD:2
    sizeof DWORD:4

  • 相关阅读:
    vector数组的翻转与排序
    20210310日报
    vector数组的遍历
    vector数组的删除
    vector数组的插入
    20210304日报
    20210303日报
    20210302日报
    计算datetime.date n个月后(前)的日期
    pandas 重命名MultiIndex列
  • 原文地址:https://www.cnblogs.com/sachin/p/2691490.html
Copyright © 2020-2023  润新知