• Solution -「APIO/CTSC 2007」「洛谷 P3620」数据备份


    (mathcal{Description})

      Link.

      给定升序序列 ({x_n}) 以及整数 (k),在 ({x_n}) 中选出恰 (k)((x_i,x_j)),使得不存在某个值出现次数多于一次,并最小化 (sum|x_i-x_j|)

    (mathcal{Solution})

      告诉我,你有一个错误的贪心 owo!

      显然 ((x_i,x_j)) 是相邻的两个数。令 (a_i=x_{i+1}-x_i),问题转化为选 (k)(a_i) 使其和最小,并保证 (a_i) 被选后 (a_{i-1})(a_{i+1}) 不被选。

      贪心取最小是不可取的,样例就是反例。不过可以使用网络流退流的思想挽救这个贪心。每次取出最小值 (a_i) 时,将 (a_i) 的值置为 (a_{i-1}+a_{i+1}-a_i) 并重新入堆,同时删除在序列上 (a_{i-1})(a_{i+1})(这里的下标加减法指前驱后继,因为有些数已经被删掉了)。考虑再次选择 (a_i) 时所表达的方案:

      初始:

    [ equire{cancel}a_{i-2}~~~~a_{i-1}~~~~a_i~~~~a_{i+1}~~~~a_{i+2} ]

      选 (a_i),此时答案 (ans=a_i);并重置 (a_i),删前驱后继:

    [ equire{cancel}a_{i-2}~~~~cancel{a_{i-1}}~~~~a_{i-1}+a_{i+1}-a_i~~~~cancel{a_{i+1}}~~~~a_{i+2} ]

      再选 (a_i),此时答案 (ans=a_i+a_{i-1}+a_{i+1}-a_i=a_{i-1}+a_{i+1}),再重置,删除:

    [ equire{cancel}cancel{a_{i-2}}~~~~cancel{a_{i-1}}~~~~a_{i-2}+a_{i+2}-a_{i-1}-a_{i+1}+a_i~~~~cancel{a_{i+1}}~~~~cancel{a_{i+2}} ]

      可以发现,这与直接选 (a_{i-2})(a_{i+2}) 是等效的!所以维护一个双向链表,利用堆进行贪心即可。

      复杂度 (mathcal O(nlog n))

    (mathcal{Code})

    #include <queue>
    #include <cstdio>
    
    typedef long long LL;
    typedef std::pair<LL, int> pli;
    
    const int MAXN = 1e5;
    int n, K, pre[MAXN + 5], suf[MAXN + 5];
    LL val[MAXN + 5];
    bool rmd[MAXN + 5];
    std::priority_queue<pli, std::vector<pli>, std::greater<pli> > heap;
    
    inline int rint () {
    	int x = 0; char s = getchar ();
    	for ( ; s < '0' || '9' < s; s = getchar () );
    	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
    	return x;
    }
    
    inline void rmpos ( const int u ) {
    	if ( ! u || u == n ) return ;
    	rmd[u] = true;
    	if ( pre[u] ) suf[pre[u]] = suf[u];
    	if ( suf[u] ^ n ) pre[suf[u]] = pre[u];
    	pre[u] = suf[u] = 0;
    }
    
    int main () {
    	n = rint (), K = rint ();
    	for ( int i = 0, p, las; i < n; ++ i ) {
    		p = rint ();
    		if ( i ) {
    			heap.push ( { val[i] = p - las, i } );
    			pre[i] = i - 1, suf[i] = i + 1;
    		}
    		las = p;
    	}
    	LL ans = 0;
    	val[0] = val[n] = 1ll << 60;
    	while ( K -- ) {
    		pli t = heap.top (); heap.pop ();
    		if ( rmd[t.second] ) { ++ K; continue; }
    		ans += t.first; LL nv = -t.first;
    		nv += val[pre[t.second]], rmpos ( pre[t.second] );
    		nv += val[suf[t.second]], rmpos ( suf[t.second] );
    		heap.push ( { val[t.second] = nv, t.second } );
    	}
    	printf ( "%lld
    ", ans );
    	return 0;
    }
    
  • 相关阅读:
    Anaconda下载(改变了镜像路径,下载速度很快!!!)
    Class类文件结构
    JVM类加载过程
    端口占用问题解决办法(以1099端口为例)
    JVM垃圾回收算法(最全)
    Java多线程学习(总结很详细!!!)
    Shuffle过程
    RSA_RSA算法原理(一)
    Maven_根据不同个环境打包, 获取不同的配置文件等等
    Maven_如何为开发和生产环境建立不同的配置文件 --我的简洁方案
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13455525.html
Copyright © 2020-2023  润新知