• 最大流 && 最小费用最大流模板


    模板从  这里   搬运,链接博客还有很多网络流题集题解参考。

    最大流模板 ( 可处理重边 )

    const int maxn = 1e6 + 10;
    const int INF = 0x3f3f3f3f;
    
    struct Edge
    {
        int from,to,cap,flow;
        Edge(){}
        Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
    };
    
    struct Dinic
    {
        int n,m,s,t;            //结点数,边数(包括反向弧),源点与汇点编号
        vector<Edge> edges;     //边表 edges[e]和edges[e^1]互为反向弧
        vector<int> G[maxn];    //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
        bool vis[maxn];         //BFS使用,标记一个节点是否被遍历过
        int d[maxn];            //d[i]表从起点s到i点的距离(层次)
        int cur[maxn];          //cur[i]表当前正访问i节点的第cur[i]条弧
    
        void init(int n,int s,int t)
        {
            this->n=n,this->s=s,this->t=t;
            for(int i=0;i<=n;i++) G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back( Edge(from,to,cap,0) );
            edges.push_back( Edge(to,from,0,0) );
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;//用来保存节点编号的
            Q.push(s);
            d[s]=0;
            vis[s]=true;
            while(!Q.empty())
            {
                int x=Q.front(); Q.pop();
                for(int i=0; i<G[x].size(); i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to] && e.cap>e.flow)
                    {
                        vis[e.to]=true;
                        d[e.to] = d[x]+1;
                        Q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
    
        //a表示从s到x目前为止所有弧的最小残量
        //flow表示从x到t的最小残量
        int DFS(int x,int a)
        {
            if(x==t || a==0)return a;
            int flow=0,f;//flow用来记录从x到t的最小残量
            for(int& i=cur[x]; i<G[x].size(); i++)
            {
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 )
                {
                    e.flow +=f;
                    edges[G[x][i]^1].flow -=f;
                    flow += f;
                    a -= f;
                    if(a==0) break;
                }
            }
            if(!flow) d[x] = -1;///炸点优化
            return flow;
        }
    
        int Maxflow()
        {
            int flow=0;
            while(BFS())
            {
                memset(cur,0,sizeof(cur));
                flow += DFS(s,INF);
            }
            return flow;
        }
    }DC;
    Dinic
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1210;
    const int maxm = 240005;///边要是题目规定的两倍
    const int INF = 0x3f3f3f3f;
    
    struct edge{ int to,cap,tot,rev; };
    struct DINIC{
        int n,m;
        edge w[maxm];
        int fr[maxm];
        int num[maxn],cur[maxn],first[maxn];
        edge e[maxm];
        void init(int n){
            memset(cur,0,sizeof(cur));
            this->n=n;
            m=0;
        }
        void AddEdge(int from,int to,int cap){
            w[++m]=(edge){to,cap};
            num[from]++,fr[m]=from;
            w[++m]=(edge){from,0};
            num[to]++,fr[m]=to;
        }
        void prepare(){
            first[1]=1;
            for(int i=2;i<=n;i++)
                first[i]=first[i-1]+num[i-1];
            for(int i=1;i<n;i++)
                num[i]=first[i+1]-1;
            num[n]=m;
            for(int i=1;i<=m;i++){
                e[first[fr[i]]+(cur[fr[i]]++)]=w[i];
    
                if (!(i%2)){
                    e[first[fr[i]]+cur[fr[i]]-1].rev=first[w[i].to]+cur[w[i].to]-1;
                    e[first[w[i].to]+cur[w[i].to]-1].rev=first[fr[i]]+cur[fr[i]]-1;
                }
            }
        }
        int q[maxn];
        int dist[maxn];
        int t;
        bool bfs(int s){
            int l=1,r=1;
            q[1]=s;
            memset(dist,-1,(n+1)*4);
            dist[s]=0;
            while(l<=r){
                int u=q[l++];
                for(int i=first[u];i<=num[u];i++){
                    int v=e[i].to;
                    if ((dist[v]!=-1) || (!e[i].cap))
                        continue;
                    dist[v]=dist[u]+1;
                    if (v==t)
                        return true;
                    q[++r]=v;
                }
            }
            return dist[t]!=-1;
        }
        int dfs(int u,int flow){
            if (u==t)
                return flow;
            int ans=0;
            for(int& i=cur[u];i<=num[u];i++){
                int v=e[i].to;
                if (!e[i].cap || dist[v]!=dist[u]+1)
                    continue;
                int t=dfs(v,min(flow,e[i].cap));
                if (t){
                    e[i].cap-=t;
                    e[e[i].rev].tot+=t;
                    flow-=t;
                    ans+=t;
                    if (!flow)
                        return ans;
                }
            }
            return ans;
        }
        int MaxFlow(int s,int t){
            int ans=0;
            this->t=t;
            while(bfs(s)){
                do{
                    memcpy(cur,first,(n+1)*4);
                    int flow;
                    while(flow=dfs(s,INF))
                        ans+=flow;
                }while(bfs(s));
                for(int i=1;i<=m;i++)
                    e[i].cap+=e[i].tot,e[i].tot=0;
            }
            return ans;
        }
    }DC;
    
    int main(void)
    {
        int N, M, S, T;
        while(~scanf("%d %d %d %d", &N, &M, &S, &T)){
            DC.init(N);
            while(M--){
                int u, v, w;
                scanf("%d %d %d", &u, &v, &w);
                DC.AddEdge(u, v, w);
            }
            DC.prepare();
            printf("%d", DC.MaxFlow(S, T));
        }
        return 0;
    }
    Dinic(这个快一点、点下标从1开始)
    ///这个是找到的别人的代码
    ///我见过的最快的最大流代码了
    ///但是我不知道原理,所以只能套一套这样子....
    #include <bits/stdc++.h>
    
    const int MAXN = 1e6 + 10;
    const int INF = INT_MAX;
    
    struct Node {
        int v, f, index;
        Node(int v, int f, int index) : v(v), f(f), index(index) {}
    };
    
    int n, m, s, t;
    std::vector<Node> edge[MAXN];
    std::vector<int> list[MAXN], height, count, que, excess;
    typedef std::list<int> List;
    std::vector<List::iterator> iter;
    List dlist[MAXN];
    int highest, highestActive;
    typedef std::vector<Node>::iterator Iterator;
    
    inline void init()
    {
        for(int i=0; i<=n; i++)
            edge[i].clear();
    }
    
    inline void addEdge(const int u, const int v, const int f) {
        edge[u].push_back(Node(v, f, edge[v].size()));
        edge[v].push_back(Node(u, 0, edge[u].size() - 1));
    }
    
    inline void globalRelabel(int n, int t) {
        height.assign(n, n);
        height[t] = 0;
        count.assign(n, 0);
        que.clear();
        que.resize(n + 1);
        int qh = 0, qt = 0;
        for (que[qt++] = t; qh < qt;) {
            int u = que[qh++], h = height[u] + 1;
            for (Iterator p = edge[u].begin(); p != edge[u].end(); ++p) {
                if (height[p->v] == n && edge[p->v][p->index].f > 0) {
                    count[height[p->v] = h]++;
                    que[qt++] = p->v;
                }
            }
        }
        for (int i = 0; i <= n; i++) {
            list[i].clear();
            dlist[i].clear();
        }
        for (int u = 0; u < n; ++u) {
            if (height[u] < n) {
                iter[u] = dlist[height[u]].insert(dlist[height[u]].begin(), u);
                if (excess[u] > 0) list[height[u]].push_back(u);
            }
        }
        highest = (highestActive = height[que[qt - 1]]);
    }
    
    inline void push(int u, Node &e) {
        int v = e.v;
        int df = std::min(excess[u], e.f);
        e.f -= df;
        edge[v][e.index].f += df;
        excess[u] -= df;
        excess[v] += df;
        if (0 < excess[v] && excess[v] <= df) list[height[v]].push_back(v);
    }
    
    inline void discharge(int n, int u) {
        int nh = n;
        for (Iterator p = edge[u].begin(); p != edge[u].end(); ++p) {
            if (p->f > 0) {
                if (height[u] == height[p->v] + 1) {
                    push(u, *p);
                    if (excess[u] == 0) return;
                } else {
                    nh = std::min(nh, height[p->v] + 1);
                }
            }
        }
        int h = height[u];
        if (count[h] == 1) {
            for (int i = h; i <= highest; i++) {
                for (List::iterator it = dlist[i].begin(); it != dlist[i].end();
                     ++it) {
                    count[height[*it]]--;
                    height[*it] = n;
                }
                dlist[i].clear();
            }
            highest = h - 1;
        } else {
            count[h]--;
            iter[u] = dlist[h].erase(iter[u]);
            height[u] = nh;
            if (nh == n) return;
            count[nh]++;
            iter[u] = dlist[nh].insert(dlist[nh].begin(), u);
            highest = std::max(highest, highestActive = nh);
            list[nh].push_back(u);
        }
    }
    
    inline int hlpp(int n, int s, int t) {
        if (s == t) return 0;
        highestActive = 0;
        highest = 0;
        height.assign(n, 0);
        height[s] = n;
        iter.resize(n);
        for (int i = 0; i < n; i++)
            if (i != s)
                iter[i] = dlist[height[i]].insert(dlist[height[i]].begin(), i);
        count.assign(n, 0);
        count[0] = n - 1;
        excess.assign(n, 0);
        excess[s] = INF;
        excess[t] = -INF;
        for (int i = 0; i < (int)edge[s].size(); i++) push(s, edge[s][i]);
        globalRelabel(n, t);
        for (int u /*, res = n*/; highestActive >= 0;) {
            if (list[highestActive].empty()) {
                highestActive--;
                continue;
            }
            u = list[highestActive].back();
            list[highestActive].pop_back();
            discharge(n, u);
            // if (--res == 0) globalRelabel(res = n, t);
        }
        return excess[t] + INF;
    }
    
    int main() {
        while(~scanf("%d %d %d %d", &n, &m, &s, &t)){
            init();
            for (int i = 0, u, v, f; i < m; i++) {
                scanf("%d %d %d", &u, &v, &f);
                addEdge(u, v, f);
            }
            printf("%d", hlpp(n + 1, s, t));///点是1~n范围的话,貌似要 n+1
        }
        return 0;
    }
    Highest Label Preflow Push(快到没人性)

    最小费用最大流模板

    点都是 0~N-1 

    struct Edge  
    {  
        int from,to,cap,flow,cost;  
        Edge(){}  
        Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}  
    };  
      
    struct MCMF  
    {  
        int n,m,s,t;  
        vector<Edge> edges;  
        vector<int> G[maxn];  
        bool inq[maxn];     //是否在队列  
        int d[maxn];        //Bellman_ford单源最短路径  
        int p[maxn];        //p[i]表从s到i的最小费用路径上的最后一条弧编号  
        int a[maxn];        //a[i]表示从s到i的最小残量  
      
        //初始化  
        void init(int n,int s,int t)  
        {  
            this->n=n, this->s=s, this->t=t;  
            edges.clear();  
            for(int i=0;i<n;++i) G[i].clear();  
        }  
      
        //添加一条有向边  
        void AddEdge(int from,int to,int cap,int cost)  
        {  
            edges.push_back(Edge(from,to,cap,0,cost));  
            edges.push_back(Edge(to,from,0,0,-cost));  
            m=edges.size();  
            G[from].push_back(m-2);  
            G[to].push_back(m-1);  
        }  
      
        //求一次增广路  
        bool BellmanFord(int &flow, int &cost)  
        {  
            for(int i=0;i<n;++i) d[i]=INF;  
            memset(inq,0,sizeof(inq));  
            d[s]=0, a[s]=INF, inq[s]=true, p[s]=0;  
            queue<int> Q;  
            Q.push(s);  
            while(!Q.empty())  
            {  
                int u=Q.front(); Q.pop();  
                inq[u]=false;  
                for(int i=0;i<G[u].size();++i)  
                {  
                    Edge &e=edges[G[u][i]];  
                    if(e.cap>e.flow && d[e.to]>d[u]+e.cost)  
                    {  
                        d[e.to]= d[u]+e.cost;  
                        p[e.to]=G[u][i];  
                        a[e.to]= min(a[u],e.cap-e.flow);  
                        if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }  
                    }  
                }  
            }  
            if(d[t]==INF) return false;  
            flow +=a[t];  
            cost +=a[t]*d[t];  
            int u=t;  
            while(u!=s)  
            {  
                edges[p[u]].flow += a[t];  
                edges[p[u]^1].flow -=a[t];  
                u = edges[p[u]].from;  
            }  
            return true;  
        }  
      
        //求出最小费用最大流  
        int Min_cost()  
        {  
            int flow=0,cost=0;  
            while(BellmanFord(flow,cost));  
            return cost;  
        }  
    }MM;  
    View Code
    struct Edge
    {
        int from,to,cap,flow,cost;
        Edge(int u,int v,int ca,int f,int co):from(u),to(v),cap(ca),flow(f),cost(co){};
    };
    
    struct MCMF
    {
        int n,m,s,t;
        vector<Edge> edges;
        vector<int> G[maxn];
        int inq[maxn];//是否在队列中
        int d[maxn];//距离
        int p[maxn];//上一条弧
        int a[maxn];//可改进量
    
        void init(int n)//初始化
        {
            this->n=n;
            for(int i=0;i<=n;i++)
                G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap,int cost)//加边
        {
            edges.push_back(Edge(from,to,cap,0,cost));
            edges.push_back(Edge(to,from,0,0,-cost));
            int m=edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool SPFA(int s,int t,int &flow,int &cost)//寻找最小费用的增广路,使用引用同时修改原flow,cost
        {
            for(int i=0;i<n;i++)
                d[i]=INF;
            memset(inq,0,sizeof(inq));
            d[s]=0;inq[s]=1;p[s]=0;a[s]=INF;
            queue<int> Q;
            Q.push(s);
            while(!Q.empty())
            {
                int u=Q.front();
                Q.pop();
                inq[u]--;
                for(int i=0;i<G[u].size();i++)
                {
                    Edge& e=edges[G[u][i]];
                    if(e.cap>e.flow && d[e.to]>d[u]+e.cost)//满足可增广且可变短
                    {
                        d[e.to]=d[u]+e.cost;
                        p[e.to]=G[u][i];
                        a[e.to]=min(a[u],e.cap-e.flow);
                        if(!inq[e.to])
                        {
                            inq[e.to]++;
                            Q.push(e.to);
                        }
                    }
                }
            }
            if(d[t]==INF) return false;//汇点不可达则退出
            flow+=a[t];
            cost+=d[t]*a[t];
            int u=t;
            while(u!=s)//更新正向边和反向边
            {
                edges[p[u]].flow+=a[t];
                edges[p[u]^1].flow-=a[t];
                u=edges[p[u]].from;
            }
            return true;
        }
    
        int MincotMaxflow(int s,int t)
        {
            int flow=0,cost=0;
            while(SPFA(s,t,flow,cost));
            return cost;
        }
    }MM;
    View Code

    网络流的知识可以参考《挑战程序设计竞赛Ⅱ》 or 以下链接

    链接链接Ⅱ链接Ⅲ链接IV

  • 相关阅读:
    基于视网膜虹膜识别的内容分级系统
    C# 反射详解一
    C# 委托浅析
    .Net Core中使用Dapper构建泛型仓储
    C# 泛型详解
    非对称可逆加密RSA
    对称可逆加密Des
    .NET Core 3.0 中间件 Middleware
    .NET Core3.0 日志 logging
    .Net Core3.0依赖注入DI
  • 原文地址:https://www.cnblogs.com/qwertiLH/p/8214670.html
Copyright © 2020-2023  润新知