LabelEncoder
是一个可以用来将标签规范化的工具类,它可以将标签的编码值范围限定在[0,n_classes-1]. 这在编写高效的Cython程序时是非常有用的. LabelEncoder
可以如下使用:
>>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6])
当然,它也可以用于非数值型标签的编码转换成数值标签(只要它们是可哈希并且可比较的):
>>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris']
class sklearn.preprocessing.
LabelEncoder
Encode target labels with value between 0 and n_classes-1.
This transformer should be used to encode target values, i.e. y
, and not the input X
.
Read more in the User Guide.
New in version 0.12.
- Attributes
- classes_ndarray of shape (n_classes,)
-
Holds the label for each class.
Examples
LabelEncoder
can be used to normalize labels.
>>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6])
It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels.
>>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris']