博客:blog.shinelee.me | 博客园 | CSDN
权重初始化最佳实践
书接上回,全0、常数、过大、过小的权重初始化都是不好的,那我们需要什么样的初始化?
-
因为对权重(w)的大小和正负缺乏先验,所以应初始化在0附近,但不能为全0或常数,所以要有一定的随机性,即数学期望(E(w)=0);
-
因为梯度消失和梯度爆炸,权重不易过大或过小,所以要对权重的方差(Var(w))有所控制;
-
深度神经网络的多层结构中,每个激活层的输出对后面的层而言都是输入,所以我们希望不同激活层输出的方差相同,即(Var(a^{[l]})=Var(a^{[l-1]})),这也就意味不同激活层输入的方差相同,即(Var(z^{[l]})=Var(z^{[l-1]}));
-
如果忽略激活函数,前向传播和反向传播可以看成是权重矩阵(转置)的连续相乘。数值太大,前向时可能陷入饱和区,反向时可能梯度爆炸,数值太小,反向时可能梯度消失。所以初始化时,权重的数值范围(方差)应考虑到前向和后向两个过程;
权重的随机初始化过程可以看成是从某个概率分布随机采样的过程,常用的分布有高斯分布、均匀分布等,对权重期望和方差的控制可转化为概率分布的参数控制,权重初始化问题也就变成了概率分布的参数设置问题。
在上回中,我们知道反向传播过程同时受到权重矩阵和激活函数的影响,那么,在激活函数不同以及每层超参数配置不同(输入输出数量)的情况下,权重初始化该做怎样的适配?这里,将各家的研究成果汇总如下,
其中,扇入(fan\_in)和扇出(fan\_out)分别为当前全连接层的输入和输出数量,更准确地说,1个输出神经元与(fan\_in)个输入神经元有连接(the number of connections feeding into the node),1个输入神经元与(fan\_out)个输出神经元有连接(the number of connections flowing out of the node),如下图所示(来自链接),
对于卷积层而言,其权重为(n)个(c imes h imes w)大小的卷积核,则一个输出神经元与(c imes h imes w)个输入神经元有连接,即(fan\_in = c imes h imes w),一个输入神经元与(n imes h imes w)个输出神经元有连接,即(fan\_out=n imes h imes w)。
期望与方差的相关性质
接下来,首先回顾一下期望与方差计算的相关性质。
对于随机变量(X),其方差可通过下式计算,
若两个随机变量(X)和(Y),它们相互独立,则其协方差为0,
进一步可得(E(XY)=E(X)E(Y)),推导如下,
两个独立随机变量和的方差,
两个独立随机变量积的方差,
全连接层方差分析
对线性组合层+非线性激活层,计算如下所示,其中(z_i^{[l-1]})为(l-1)层第(i)个激活函数的输入,(a_i^{[l-1]})为其输出,(w_{ij}^{[l]})为第(l)层第(i)个输出神经元与第(j)个输入神经元连接的权重,(b^{[l]})为偏置,计算方式如下
在初始化阶段,将每个权重以及每个输入视为随机变量,可做如下假设和推断,
- 网络输入的每个元素(x_1,x_2,dots)为独立同分布;
- 每层的权重随机初始化,同层的权重(w_{i1}, w_{i2}, dots)独立同分布,且期望(E(w)=0);
- 每层的权重(w)和输入(a)随机初始化且相互独立,所以两者之积构成的随机变量(w_{i1}a_1, w_{i2}a_2, dots)亦相互独立,且同分布;
- 根据上面的计算公式,同层的(z_1, z_2, dots)为独立同分布,同层的(a_1, a_2, dots)也为独立同分布;
需要注意的是,上面独立同分布的假设仅在初始化阶段成立,当网络开始训练,根据反向传播公式,权重更新后不再相互独立。
在初始化阶段,输入(a)与输出(z)方差间的关系如下,令(b=0),
tanh下的初始化方法
若激活函数为线性恒等映射,即(f(x)=x),则(a = z),自然(E(a)=E(z)),(Var(a) = Var(z))。
因为网络输入的期望(E(x)=0),每层权重的期望(E(w) = 0),在前面相互独立的假设下,根据公式(E(XY)=E(X)E(Y)),可知(E(a)=E(z)=sum E(wa)=sum E(w)E(a)=0)。由此可得,
更进一步地,令(n^{[l]})为第(l)层的输出数量((fan\_out)),则第(l)层的输入数量($fan_in ()即前一层的输出数量为)n^{[l-1]}(。第)L$层输出的方差为
反向传播时,需要将上式中的(n^{[l-1]})替换为(n^{[l]})(即(fan\_in)替换为(fan\_out)),同时将(x)替换为损失函数对网络输出的偏导。
所以,经过(t)层,前向传播和反向传播的方差,将分别放大或缩小
为了避免梯度消失和梯度爆炸,最好保持这个系数为1。
需要注意的是,上面的结论是在激活函数为恒等映射的条件下得出的,而tanh激活函数在0附近可近似为恒等映射,即$tanh(x) approx x $。
Lecun 1998
Lecun 1998年的paper Efficient BackProp ,在输入Standardization以及采用tanh激活函数的情况下,令(n^{[l-1]}Var(w^{[l]})=1),即在初始化阶段让前向传播过程每层方差保持不变,权重从如下高斯分布采样,其中第(l)层的(fan\_in = n^{[l-1]}),
Xavier 2010
在paper Xavier-2010-Understanding the difficulty of training deep feedforward neural networks中,Xavier和Bengio同时考虑了前向过程和反向过程,使用(fan\_in)和(fan\_out)的平均数对方差进行归一化,权重从如下高斯分布中采样,
同时文章中还提及了从均匀分布中初始化的方法,因为均匀分布的方差与分布范围的关系为
若令(Var(U(-n, n)) = frac{2}{fan\_in + fan\_out}),则有
即权重也可从如下均匀分布中采样,
在使用不同激活函数的情况下,是否使用Xavier初始化方法对test error的影响如下所示,图例中带(N)的表示使用Xavier初始化方法,Softsign一种为类tanh但是改善了饱和区的激活函数,图中可以明显看到tanh 和tanh N在test error上的差异。
论文还有更多训练过程中的权重和梯度对比图示,这里不再贴出,具体可以参见论文。
ReLU/PReLU下的初始化方法
搬运一下上面的公式,
因为激活函数tanh在0附近可近似为恒等映射,所以在初始化阶段可以认为(E(a) = 0),但是对于ReLU激活函数,其输出均大于等于0,不存在负数,所以(E(a) = 0)的假设不再成立。
但是,我们可以进一步推导得到,
He 2015 for ReLU
对于某个具体的层(l)则有,
如果假定(w{[l-1]})来自某个关于原点对称的分布,因为(E(w^{[l-1]}) = 0),且(b^{[l-1]} = 0),则可以认为(z^{[l-1]})分布的期望为0,且关于原点0对称。
对于一个关于原点0对称的分布,经过ReLU后,仅保留大于0的部分,则有
所以,上式可进一步得出,
类似地,需要放缩系数为1,即
即从前向传播考虑,每层的权重初始化为
同理,从后向传播考虑,每层的权重初始化为
文中提到,单独使用上面两个中的哪一个都可以,因为当网络结构确定之后,两者对方差的放缩系数之比为常数,即每层扇入扇出之比的连乘,解释如下,
使用Xavier和He初始化,在激活函数为ReLU的情况下,test error下降对比如下,22层的网络,He的初始化下降更快,30层的网络,Xavier不下降,但是He正常下降。
He 2015 for PReLU
对于PReLU激活函数,负向部分为(f(x) = ax),如下右所示,
对于PReLU,求取(E((a^{[l-1]})^2))可对正向和负向部分分别积分,不难得出,
caffe中的实现
尽管He在paper中说单独使用(fan\_in)或(fan\_out)哪个都可以,但是,在Caffe的实现中,还是提供了两者平均值的方式,如下所示,当然默认是使用(fan\_in)。
小结
至此,对深度神经网络权重初始化方法的介绍已告一段落。虽然因为BN层的提出,权重初始化可能已不再那么紧要。但是,对经典权重初始化方法经过一番剖析后,相信对神经网络运行机制的理解也会更加深刻。
以上。
参考
- cs231n-Neural Networks Part 2: Setting up the Data and the Loss
- paper-Efficient BackProp
- paper-Understanding the difficulty of training deep feedforward neural networks
- paper-Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
- wiki-Variance
- Initializing neural networks
- Weight Initialization in Neural Networks: A Journey From the Basics to Kaiming
- Kaiming He initialization
- Choosing Weights: Small Changes, Big Differences
- Understand Kaiming Initialization and Implementation Detail in PyTorch