博客:blog.shinelee.me | 博客园 | CSDN
交叉熵损失与均方误差损失
常规分类网络最后的softmax层如下图所示,传统机器学习方法以此类比,
一共有(K)类,令网络的输出为([hat{y}_1,dots, hat{y}_K]),对应每个类别的概率,令label为 ([y_1, dots, y_K])。对某个属于(p)类的样本,其label中(y_p=1),(y_1, dots, y_{p-1}, y_{p+1}, dots, y_K)均为0。
对这个样本,交叉熵(cross entropy)损失为
均方误差损失(mean squared error,MSE)为
则(m)个样本的损失为
对比交叉熵损失与均方误差损失,只看单个样本的损失即可,下面从两个角度进行分析。
损失函数角度
损失函数是网络学习的指挥棒,它引导着网络学习的方向——能让损失函数变小的参数就是好参数。
所以,损失函数的选择和设计要能表达你希望模型具有的性质与倾向。
对比交叉熵和均方误差损失,可以发现,两者均在(hat{y} = y = 1)时取得最小值0,但在实践中(hat{y}_p)只会趋近于1而不是恰好等于1,在(hat{y}_p < 1)的情况下,
- 交叉熵只与label类别有关,(hat{y}_p)越趋近于1越好
- 均方误差不仅与(hat{y}_p)有关,还与其他项有关,它希望(hat{y}_1, dots, hat{y}_{p-1}, hat{y}_{p+1}, dots, hat{y}_K)越平均越好,即在(frac{1-hat{y}_p}{K-1})时取得最小值
分类问题中,对于类别之间的相关性,我们缺乏先验。
虽然我们知道,与“狗”相比,“猫”和“老虎”之间的相似度更高,但是这种关系在样本标记之初是难以量化的,所以label都是one hot。
在这个前提下,均方误差损失可能会给出错误的指示,比如猫、老虎、狗的3分类问题,label为([1, 0, 0]),在均方误差看来,预测为([0.8, 0.1, 0.1])要比([0.8, 0.15, 0.05])要好,即认为平均总比有倾向性要好,但这有悖我们的常识。
而对交叉熵损失,既然类别间复杂的相似度矩阵是难以量化的,索性只能关注样本所属的类别,只要(hat{y}_p)越接近于1就好,这显示是更合理的。
softmax反向传播角度
softmax的作用是将((-infty, +infty))的几个实数映射到((0,1))之间且之和为1,以获得某种概率解释。
令softmax函数的输入为(z),输出为(hat{y}),对结点(p)有,
(hat{y}_p)不仅与(z_p)有关,还与({z_k | k eq p})有关,这里仅看$z_p $,则有
(hat{y}_p)为正确分类的概率,为0时表示分类完全错误,越接近于1表示越正确。根据链式法则,按理来讲,对与(z_p)相连的权重,损失函数的偏导会含有(hat{y}_p(1-hat{y}_p))这一因子项,(hat{y}_p = 0)时分类错误,但偏导为0,权重不会更新,这显然不对——分类越错误越需要对权重进行更新。
对交叉熵损失,
则有
恰好将(hat{y}_p(1-hat{y}_p))中的(hat{y}_p)消掉,避免了上述情形的发生,且(hat{y}_p)越接近于1,偏导越接近于0,即分类越正确越不需要更新权重,这与我们的期望相符。
而对均方误差损失,
则有,
显然,仍会发生上面所说的情况——(hat{y}_p = 0),分类错误,但不更新权重。
综上,对分类问题而言,无论从损失函数角度还是softmax反向传播角度,交叉熵都比均方误差要好。