说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确。
单源最短路径
Bellman-Ford算法
思维
一张有向图,有n个点,m条边,用dis[]数组保存源点到各点的最短距离,可以通过对边进行n-1次的遍历,当其满足dis[v]>dis[u]+w的时候,就对其进行松弛更新,重复n-1次以后就能得到答案,如果n-1次以后还能继续更新,则可以判断图中出现了负权环,思路非常简短。
举例演算
我们依然设置1为源点,为了直观展现算法思路,设定边的输入顺序如下:
2 4 2
3 4 3
1 2 1
1 3 2
次序 | dis[1] | dis[2] | dis[3] | dis[4] |
---|---|---|---|---|
初始化 | 0 | ∞ | ∞ | ∞ |
1 | 0 | 1 | 2 | ∞ |
2 | 0 | 1 | 2 | 3 |
3 | 0 | 1 | 2 | 3 |
第一次遍历中,由于点2和点4的距离都是无限大,无法松弛,点3和点4同理。点1和点2,点1和点3符合松弛条件,更新。第二次遍历中,点2和点4就可以松弛更新了,点3和点4也是同理。第三次遍历是一次无用遍历,所有边都已经松弛过了。
由此也能够看出,其实不用进行n-1的遍历就可以得到答案了,可以加入一个bool标记来提前结束这个循环过程。
代码实现
时间复杂度O(NM)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int MAX = 1000;
int u[MAX], v[MAX], w[MAX], dis[MAX];
int n, m;
void Ford(int s) {
for (int i = 1; i <= n; i++) dis[i] = 0x7fffffff;
dis[s] = 0;
for (int i = 0; i < n - 1; i++) {
bool check = 0;
for (int j = 0; j < m; j++) {
if ((dis[v[j]] >= 0x7fffffff) && (dis[u[j]] >= 0x7fffffff)) continue;
else {
if (dis[v[j]] > dis[u[j]] + w[j]) {
dis[v[j]] = dis[u[j]] + w[j];
check = 1;
}
}
}
if (!check) break;
}
}
int main() {
cin >> n >> m;
for (int i = 0; i < m; i++) cin >> u[i] >> v[i] >> w[i];
int x;
cin >> x;
Ford(x);
cout << endl;
for (int i = 1; i <= n; i++) {
if (dis[i] > 100000) cout << "none" << " ";
else cout << dis[i] << " ";
}
cout << endl;
return 0;
}
SPFA算法
思维
SPFA算法就是用双端队列优化过的Bellman-Ford算法,初始时将源点加入队列。每次选出队首结点,对其的所有出边进行松弛更新,更新成功的点加入队列,同一个结点可能被多次更新,但是同一个结点只能在同时在队列中出现一个,重复这个操作直到队列为空。这里其实有点像是上一篇dij堆优化代码的思路了。只是缺少了贪心。
代码实现
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
sing namespace std;
const int MAX = 1000;
int h[MAX * 2], nxt[MAX * 2], to[MAX * 2], co[MAX * 2], dis[MAX], k = 0, book[MAX];
int n, m;
void insert(int u, int v, int c) {
nxt[++k] = h[u];
h[u] = k;
to[k] = v;
co[k] = c;
}
void SPFA(int s) {
for (int i = 1; i <= n; i++) {
book[i] = 0;
dis[i] = 0x7fffffff;
}
queue<int> que;
que.push(s);
dis[s] = 0;
book[s] = 1;
while (!que.empty()) {
int cur = que.front();
for (int i = h[cur]; i; i = nxt[i]) {
if (dis[to[i]] > dis[cur] + co[i]) {
dis[to[i]] = dis[cur] + co[i];
if (book[to[i]] == 0) {
que.push(to[i]);
book[to[i]] = 1;
}
}
}
que.pop();
book[cur] = 0;
}
}
int main() {
cin >> n >> m;
int u, v, w;
for (int i = 0; i < m; i++) {
cin >> u >> v >> w;
insert(u, v, w);
}
int x;
cin >> x;
SPFA(x);
for (int i = 1; i <= n; i++) {
if (dis[i] > 100000) cout << "none" << " ";
else cout << dis[i] << " ";
}
cout << endl;
return 0;
}