pytorch使用说明
1.torch和numpy的转换
import torch
import numpy as np
np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()
2.torch中的数学运算
# abs 绝对值计算
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data) # 转换成32位浮点 tensor
print(
'
abs',
'
numpy: ', np.abs(data), # [1 2 1 2]
'
torch: ', torch.abs(tensor) # [1 2 1 2]
)
# sin 三角函数 sin
print(
'
sin',
'
numpy: ', np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743]
'
torch: ', torch.sin(tensor) # [-0.8415 -0.9093 0.8415 0.9093]
)
# mean 均值
print(
'
mean',
'
numpy: ', np.mean(data), # 0.0
'
torch: ', torch.mean(tensor) # 0.0
)
# matrix multiplication 矩阵点乘
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data) # 转换成32位浮点 tensor
# correct method
print(
'
matrix multiplication (matmul)',
'
numpy: ', np.matmul(data, data), # [[7, 10], [15, 22]]
'
torch: ', torch.mm(tensor, tensor) # [[7, 10], [15, 22]]
)
# !!!! 下面是错误的方法 !!!!
data = np.array(data)
print(
'
matrix multiplication (dot)',
'
numpy: ', data.dot(data), # [[7, 10], [15, 22]] 在numpy 中可行
'
torch: ', tensor.dot(tensor) # torch 会转换成 [1,2,3,4].dot([1,2,3,4) = 30.0
)
3. 什么是Variable
在Torch中的Variable就是一个存放会变化的值的地理位置。里面的值会不停的变化。其中的值就是torch的Tensor.如果用Variable进行计算,那返回的也是一个同类型的Variable.
定义一个Variable:
import torch
from torch.autograd import Variable # torch 中 Variable 模块
# 先生鸡蛋
tensor = torch.FloatTensor([[1,2],[3,4]])
# 把鸡蛋放到篮子里, requires_grad是参不参与误差反向传播, 要不要计算梯度
variable = Variable(tensor, requires_grad=True)
print(tensor)
"""
1 2
3 4
[torch.FloatTensor of size 2x2]
"""
print(variable)
"""
Variable containing:
1 2
3 4
[torch.FloatTensor of size 2x2]
"""
对比一下tensor的计算和variable的计算
t_out = torch.mean(tensor*tensor) # x^2
v_out = torch.mean(variable*variable) # x^2
print(t_out)
print(v_out) # 7.5
时刻计住,Variable计算是,它在背景幕布后面一步步默默搭建着一个庞大的系统,叫做计算图,computational graph.这个图将所有的计算步骤(节点)都连接起来,最后进行误差反向传递的时候一次性将所有variable里面的修改幅度(梯度)都计算出来,而tensor就没有这个能力。
获取Variable里面的数据
直接print(variable)只会输出Variable形式的数据,在很多时候是用不了的(画图), 所以我们要将其变成tensor形式。
print(variable) # Variable 形式
"""
Variable containing:
1 2
3 4
[torch.FloatTensor of size 2x2]
"""
print(variable.data) # tensor 形式
"""
1 2
3 4
[torch.FloatTensor of size 2x2]
"""
print(variable.data.numpy()) # numpy 形式
"""
[[ 1. 2.]
[ 3. 4.]]
"""
4.激活函数
import torch
import numpy as np
import torch
import torch.nn.functional as F # 激励函数都在这
from torch.autograd import Variable
# 做一些假数据来观看图像
x = torch.linspace(-5, 5, 200) # x data (tensor), shape=(100, 1)
x = Variable(x)
x_np = x.data.numpy() # 换成 numpy array, 出图时用
# 几种常用的 激励函数
y_relu = F.relu(x).data.numpy()
y_sigmoid = F.sigmoid(x).data.numpy()
y_tanh = F.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy()
# y_softmax = F.softmax(x) softmax 比较特殊, 不能直接显示, 不过他是关于概率的, 用于分类
if __name__ == '__main__':
import matplotlib.pyplot as plt # python 的可视化模块, 我有教程 (https://morvanzhou.github.io/tutorials/data-manipulation/plt/)
plt.figure(1, figsize=(8, 6))
plt.subplot(221)
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')
plt.subplot(222)
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')
plt.subplot(223)
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')
plt.subplot(224)
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')
plt.show()