• (线段树) Count the Colors --ZOJ --1610


    链接:

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/F

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1610

    Count the Colors

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Painting some colored segments on a line, some previously painted segments may be covered by some the subsequent ones.

    Your task is counting the segments of different colors you can see at last.


    Input

    The first line of each data set contains exactly one integer n, 1 <= n <= 8000, equal to the number of colored segments.

    Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:

    x1 x2 c

    x1 and x2 indicate the left endpoint and right endpoint of the segment, c indicates the color of the segment.

    All the numbers are in the range [0, 8000], and they are all integers.

    Input may contain several data set, process to the end of file.


    Output

    Each line of the output should contain a color index that can be seen from the top, following the count of the segments of this color, they should be printed according to the color index.

    If some color can't be seen, you shouldn't print it.

    Print a blank line after every dataset.


    Sample Input

    5
    0 4 4
    0 3 1
    3 4 2
    0 2 2
    0 2 3
    4
    0 1 1
    3 4 1
    1 3 2
    1 3 1
    6
    0 1 0
    1 2 1
    2 3 1
    1 2 0
    2 3 0
    1 2 1


    Sample Output

    1 1
    2 1
    3 1

    1 1

    0 2
    1 1

    一个涂色问题,我看到了好几种不同的解法, 感觉太神奇,太奇妙了,先附上自己的代码,再学习一下别人的,写了好几题了,不能追速度,我需要好好琢磨琢磨

    代码:

    #include<stdio.h>
    #include<algorithm>
    #include<stdlib.h>
    #include<string.h>
    using namespace std;
    
    #define Lson r<<1
    #define Rson r<<1|1
    
    const int N = 8500;
    
    struct Node
    {
        int l, r, c;
    } s[N<<2];
    
    struct node
    {
        int L, R;
        int color;
        int Mid()
        {
            return (L+R)>>1;
        }
    } a[N<<2];
    
    int Color[N];
    
    void CoverColor(int L, int R, int e)
    {
        for(int i=L; i<=R; i++)
            Color[i]=e;
    }
    
    void UpDate(int r)
    {
        if(a[r].L != a[r].R)
        if(a[Lson].color==1 && a[Rson].color==1)
            a[r].color = 1;
    }
    
    void BuildTree(int r, int L, int R)
    {
        a[r].L = L, a[r].R = R;
        a[r].color = 0; // 0代表没有颜色覆盖, 1代表未覆盖, 2代表子树有被别的颜色覆盖
    
        if(L==R) return ;
    
        BuildTree(Lson, L, a[r].Mid());
        BuildTree(Rson, a[r].Mid()+1, R);
    }
    
    void Insert(int r, int L, int R, int e)
    {
        if(a[r].color == 1) return ;
    
        if(a[r].L==L && a[r].R==R && !a[r].color)
        {
            a[r].color=1;
            CoverColor(L, R, e);
            return ;
        }
    
        a[r].color = 2;
    
        if(R<=a[r].Mid())
            Insert(Lson, L, R, e);
        else if(L>a[r].Mid())
            Insert(Rson, L, R, e);
        else
        {
            Insert(Lson, L, a[r].Mid(), e);
            Insert(Rson, a[r].Mid()+1, R, e);
        }
    
        UpDate(r);
    }
    
    int main()
    {
        int n;
    
        while(scanf("%d", &n)!=EOF)
        {
            int i, ans[N]={0};
    
            memset(s, 0, sizeof(s));
            for(i=1; i<=n; i++)
                scanf("%d%d%d", &s[i].l, &s[i].r, &s[i].c);
    
            BuildTree(1, 0, N-1);
            memset(Color, -1, sizeof(Color));
    
            for(i=n; i>0; i--)
                Insert(1, s[i].l+1, s[i].r, s[i].c);
    
    
            for(i=0; i<N; i++)
            {
                if(Color[i]!=-1 && (!i || Color[i]!=Color[i-1]))
                    ans[Color[i]]++;
            }
    
            for(i=0; i<N; i++)
            if(ans[i])  printf("%d %d
    ", i, ans[i]);
    
            printf("
    ");
        }
        return 0;
    }

    队友暴力过的代码, 没用线段树

    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    #define N 8006
    int cnt[N],a[N];
    int main()
    {
        int n, p, q, c;
        while(scanf("%d", &n) != EOF)
        {
            int Max = 0;
            memset(a, 0, sizeof(a));
            memset(cnt, 0, sizeof(cnt));
            for(int i=0; i<n; i++)
            {
                scanf("%d%d%d", &p, &q, &c);
                for(int j=p; j<q; j++)
                    a[j] = c+1;
                Max = max(Max, q);
            }
            for(int i=0; i<Max; i++)
            {
                while(i!=0 && a[i]!=0 && a[i]==a[i-1])
                    i++;
                if(a[i] != 0)
                    cnt[ a[i]-1 ]++;
            }
            for(int i=0; i<N; i++)
            {
                if(cnt[i]!=0)
                    printf("%d %d
    ", i, cnt[i]);
            }
            printf("
    ");
        }
        return 0;
    }
    View Code
    勿忘初心
  • 相关阅读:
    Python的历史
    python excel
    excel xdr wdr
    sql 常用命令
    selenium 配置firefox
    SQL 一直恢复状态解决方法
    sqlserver 学习
    ITCHAT用法
    健身卡属性,以及业务规则,
    安装REDIS
  • 原文地址:https://www.cnblogs.com/YY56/p/4692599.html
Copyright © 2020-2023  润新知