• Joseph环的数学求解及史上最难Joseph问题(转载)


    无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

    为了讨论方便,先把问题稍微改变一下,并不影响原意:

    问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

    我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
       k   k+1   k+2   ... n-2, n-1, 0, 1, 2, ... k-2
    并且从k开始报0。

    现在我们把他们的编号做一下转换:
    k      --> 0
    k+1    --> 1
    k+2    --> 2
    ...
    ...
    k-2    --> n-2
    k-1    --> n-1

    变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

    如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

    令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

    递推公式
    f[1]=0;
    f[i]=(f[i-1]+m)%i;   (i>1)

    有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1

    由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

    #i nclude <stdio.h>

    main()
    {
       int n, m, i, s=0;
       printf ("N M = "); scanf("%d%d", &n, &m);
       for (i=2; i<=n; i++) s=(s+m)%i;
       printf ("The winner is %d\n", s+1);
    }

    这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。

    史上最难Joseph问题:

    编号为1,2,......,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。试设计一个程序求出列顺序。(基本要求:利用单向循环链表存储结构模拟此过程,按照出列的顺序印出各人的编号

  • 相关阅读:
    在博客园里给图片加水印(canvas + drag)
    Chrome开发者工具使用指南
    《古剑奇谭3》千秋戏辅助工具(前端React制作)
    React中useEffect的源码解读
    关于为什么使用React新特性Hook的一些实践与浅见
    使用@babel/preset-typescript取代awesome-typescript-loader和ts-loader
    使用dva改造React旧项目的数据流方案
    在React旧项目中安装并使用TypeScript的实践
    安利一个绘制指引线的JS库leader-line
    微信小程序中悬浮窗功能的实现(主要探讨和解决在原生组件上的拖动)
  • 原文地址:https://www.cnblogs.com/newpanderking/p/2117751.html
Copyright © 2020-2023  润新知