• 树链剖分+离散+扫描(HDU5044)


    Tree

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1385    Accepted Submission(s): 237


    Problem Description
    You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N

    There are N - 1 edges numbered from 1 to N - 1.

    Each node has a value and each edge has a value. The initial value is 0.

    There are two kind of operation as follows:

    ● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.

    ● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.

    After finished M operation on the tree, please output the value of each node and edge.
     

    Input
    The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.

    The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.

    The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.

    For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
     

    Output
    For each test case, print a line “Case #t:”(without quotes, t means the index of the test case) at the beginning.

    The second line contains N integer which means the value of each node.

    The third line contains N - 1 integer which means the value of each edge according to the input order.
     

    Sample Input
    2 4 2 1 2 2 3 2 4 ADD1 1 4 1 ADD2 3 4 2 4 2 1 2 2 3 1 4 ADD1 1 4 5 ADD2 3 2 4
     

    Sample Output
    Case #1: 1 1 0 1 0 2 2 Case #2: 5 0 0 5 0 4 0
    题意:给出一棵树,树上的点和边的权值开始都是0,有两种操作,对于第一种操作,ADD1:在u到v的路径上每个点的权值+w;对于第二种操作ADD2:在u到v的路径上每个边的权值+w;最后询问每个点的权值和每条边的权值(按照输入的顺序)
    分析:首先两个dfs进行轻重链剖分,然后对于每个区间[L,R],在L的位置+w,在R+1的位置-w,保存在g1数组中,同理,对于边也一样,保存在g2数组里,最后从前往后做一遍扫描即可;
    程序:
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include"stdio.h"
    #include"string.h"
    #include"iostream"
    #include"map"
    #include"string"
    #include"queue"
    #include"stdlib.h"
    #include"algorithm"
    #include"math.h"
    #define M 110009
    #define eps 1e-5
    #define inf 100000000
    #define mod 100000000
    #define INF 0x3f3f3f3f
    using namespace std;
    struct node
    {
        int v;
        node(int vv){v=vv;}
    };
    vector<node>edge[M];
    int pos,son[M],fa[M],p[M],fp[M],deep[M],top[M],num[M],g1[M],g2[M],ans[M];
    void dfs(int u,int f,int d)
    {
        deep[u]=d;
        fa[u]=f;
        num[1]=1;
        for(int i=0;i<(int)edge[u].size();i++)
        {
            int v=edge[u][i].v;
            if(v==f)continue;
            dfs(v,u,d+1);
            num[u]+=num[v];
            if(son[u]==-1||num[son[u]]<son[v])
                son[u]=v;
        }
    }
    void getpos(int u,int sp)
    {
        top[u]=sp;
        p[u]=pos++;
        fp[p[u]]=u;
        if(son[u]==-1)return;
        getpos(son[u],sp);
        for(int i=0;i<(int)edge[u].size();i++)
        {
            int v=edge[u][i].v;
            if(v==son[u]||v==fa[u])continue;
            getpos(v,v);
        }
    }
    void init()
    {
        pos=0;
        memset(son,-1,sizeof(son));
        dfs(1,1,1);
        getpos(1,1);
    }
    void getnode(int u,int v,int d)
    {
        int f1=top[u];
        int f2=top[v];
        while(f1!=f2)
        {
            if(deep[f1]<deep[f2])
            {
                swap(f1,f2);
                swap(u,v);
            }
            g1[p[f1]]+=d;
            g1[p[u]+1]-=d;
            u=fa[f1];
            f1=top[u];
        }
        if(u==v)
        {
            g1[p[u]]+=d;
            g1[p[u]+1]-=d;
            return;
        }
        if(deep[u]>deep[v])swap(u,v);
        g1[p[u]]+=d;
        g1[p[v]+1]-=d;
        return;
    }
    void getedge(int u,int v,int d)
    {
        int f1=top[u];
        int f2=top[v];
        while(f1!=f2)
        {
            if(deep[f1]<deep[f2])
            {
                swap(f1,f2);
                swap(u,v);
            }
            g2[p[f1]]+=d;
            g2[p[u]+1]-=d;
            u=fa[f1];
            f1=top[u];
        }
        if(u==v)
            return;
        if(deep[u]>deep[v])swap(u,v);
        g2[p[son[u]]]+=d;
        g2[p[v]+1]-=d;
        return;
    }
    struct lede
    {
        int u,v;
    }e[M];
    int main()
    {
        int T,m,n,i,u,v,w,kk=1;
        char ch[22];
        cin>>T;
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(i=0;i<=n;i++)
                edge[i].clear();
            for(i=1;i<n;i++)
            {
                scanf("%d%d",&u,&v);
                edge[u].push_back(v);
                edge[v].push_back(u);
                e[i].u=u;
                e[i].v=v;
            }
            init();
            memset(g1,0,sizeof(g1));
            memset(g2,0,sizeof(g2));
            while(m--)
            {
                scanf("%s%d%d%d",ch,&u,&v,&w);
                if(strcmp(ch,"ADD1")==0)
                    getnode(u,v,w);
                else
                    getedge(u,v,w);
            }
            printf("Case #%d:
    ",kk++);
            int sum=0;
            for(i=0;i<pos;i++)
            {
                sum+=g1[i];
                ans[i]=sum;
            }
            for(i=1;i<=n;i++)
            {
                if(i==1)
                    printf("%d",ans[p[i]]);
                else
                    printf(" %d",ans[p[i]]);
            }
            printf("
    ");
            sum=0;
            for(i=1;i<pos;i++)
            {
                sum+=g2[i];
                ans[i]=sum;
            }
            for(i=1;i<n;i++)
            {
                if(deep[e[i].u]<deep[e[i].v])
                    swap(e[i].u,e[i].v);
                if(i==1)
                    printf("%d",ans[p[e[i].u]]);
                else
                    printf(" %d",ans[p[e[i].u]]);
            }
            printf("
    ");
        }
    }
    



  • 相关阅读:
    记一次干扰后处理特效的实现
    Cosine-Weighted采样算法
    PBR技术简介(三):菲涅尔公式
    PBR技术简介(二):Cook-Torrance BRDF
    PBR技术简介(一)
    Python函数的默认参数坑点解析
    屏幕空间环境光屏蔽(SSAO)探秘
    辐射度量学简介(二)
    辐射度量学简介(一)
    解决16bit压缩贴图失真问题
  • 原文地址:https://www.cnblogs.com/mypsq/p/4348143.html
Copyright © 2020-2023  润新知