• 辐射度量学简介(一)


    之前在学习路径追踪的时候没有去细究里面的光学理论,最近趁着有时间把闫令琪老师的计算机图形学课程(万万没想到在B站上也可以学习!)辐射度量学的内容又仔细学习一遍,也算是打下了路径追踪的理论基础。
    辐射度量学提供了一组基本的物理量用来测量光辐射,这些物理量也就成为了计算机图形学中重要的基本概念,如下表所示:

    英文名 中文名 单位 符号
    radiant energy 辐射能量 J Q
    radiant flux 辐射通量 W Φ
    irradiance 辐射照度 W/m^2 E
    radiant intensity 辐射强度 W/sr I
    radiance 辐射亮度 W/(m^2 * sr) L

    后面将对它们依次进行介绍。

    辐射能量和辐射通量

    辐射能量(radiant energy)代表的是电磁辐射的量度,单位为焦耳(J)。每个光子都携带着一定的能量,这个能量正比于它的频率v,也就是:
    Q=hv
    其中h为普朗克常数。由于频率决定着光的颜色,我们也就可以说,蓝光要比红光携带更多的能量。
    而辐射通量(radiant flux)指的是单位时间上的辐射能量。它的单位为W(也就是瓦特),数学定义如下:
    Φ = dQ/dt

    立体角和辐射强度

    辐射强度,要首先介绍立体角。那立体角是什么呢?
    立体角代表的是三维空间上的角度。为了帮助理解,我们可以想象一下二维空间的角度,如下图所示:

    这个二维圆上,它的角度为θ,半径为r,弧度为l,那么:
    θ=l/r。整个圆的角度为2π。
    拓展到三维空间,立体角就是三维空间的“θ”,被定义为Ω。那么该片角度所涉及到的球的面积就是A,如下图所示:

    可以算得:
    Ω = A/r^2
    对整个球,它的立体角角度为4π。
    下图展示了立体角的积分过程:

    因为三维的位置,按照球坐标系来算的话由r、θ、φ三个参数来控制,根据上面提到的弧长和角度的关系,可以算得在dθ和dφ的情况下,dA的计算,再通过面积和立体角的关系来推得立体角的微分dω即可。

    知道了立体角的概念后,就可以定义辐射强度(radiant intensity)为单位立体角的辐射通量:
    I = dΦ/dω

    辐射照度和辐射亮度

    辐射照度指的是在单位面积上的辐射通量:
    E = dΦ/dA

    其实用辐射照度就可以解释为什么距离光源越远接收到的能量越少:

    如上图所示,因为辐射通量Φ是固定的,随着r越来越远,其面积也就越来越大,因此单位面积所接收到的能量也就越来越少,这是符合常识的。

    而辐射亮度指的是在单位面积、单位立体角上的辐射通量:
    L=d^2Φ/dωdAcosθ
    值得注意的是,这里的cosθ指的是面的法向和光源之间的夹角,因此上面在计算L时提到的面积其实是单位垂直面积
    具体是怎么回事呢?如下图所示:

    对于一束光线,图中的dA是irradiance中所定义的,光所照射的面积,而才是dA投影到垂直于光线方向的面积。不难得出
    通过以上分析,不难得出irradiance和radiance的关系:

  • 相关阅读:
    MIX11大会WP7主题演讲中文字幕版
    日本战神——源义经
    System.Web.HttpUtility for .Net Compact Framework
    VS2010 SP1
    <如何成为一个成功的职业经理人>读书笔记2
    <左手曾国藩,右手胡雪岩>读书笔记
    <福布斯荐75本经商必读06基业长青>读书笔记
    <中国人聪明之道>读书笔记
    <浮沉>读书笔记
    <79个潜规则:改变生活的心理学法则>读书笔记
  • 原文地址:https://www.cnblogs.com/wickedpriest/p/13132337.html
Copyright © 2020-2023  润新知