• UVA12161 Ironman Race in Treeland


    传送


    题面:给定一棵(n(1 leqslant n leqslant 30000))个结点的树,每条边包含长度(L)和费用(D)(1 leqslant L,D leqslant 1000)两个权值。要求选择一条总费用不超过(m(1leqslant leqslant 10 ^8))的路径,使得路径总长度尽量大。输入保证有解。


    这道题的做法还是比较显然的。
    首先肯定是点分治,因为求树上路径嘛。
    然后想怎么拼接从重心出发的两条路径:对于费用为(d_i)的路径,我们肯定要在不超过(D - d_i)中找到长度最大的另一条路径。
    这里很容易想到单调栈,即栈中所有路径随着费用递增,其长度必须也是递增的(就是如果有人比你小还比你强,那你就废了)。
    但这有个问题。
    因为在处理完每一个子树中的路径后,我们要把这些路径合并到单调栈中。但是单调栈不允许插入费用比栈顶小的元素,否则就不能保证是(O(1))的了。
    所以这里我们要用set或者map维护一个可插入和删除的、长度随费用递增的序列。
    所以最终的复杂度是(O(nlog^2n)).


    然后set几乎是写崩了,各种边界问题,麻烦得很,所以代码就特别丑。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<queue>
    #include<set>
    #include<assert.h>
    #include<ctime>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 3e4 + 5;
    In ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), las = ' ';
    	while(!isdigit(ch)) las = ch, ch = getchar();
    	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(las == '-') ans = -ans;
    	return ans;
    }
    In void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + '0');
    }
    In void MYFILE()
    {
    #ifndef mrclr
    	freopen("random.in", "r", stdin);
    	freopen("bf.out", "w", stdout);
    #endif
    }
    
    int n, K;
    struct Node
    {
    	int cos, val;
    	In bool operator < (const Node& oth)const
    	{
    		return cos < oth.cos;
    	}
    	In Node operator + (const Node& oth)const
    	{
    		return (Node){cos + oth.cos, val + oth.val};
    	}
    };
    struct Edge
    {
    	int nxt, to;
    	Node t;
    }e[maxn << 1];
    int head[maxn], ecnt = -1;
    In void addEdge(int x, int y, int cos, int val)
    {
    	e[++ecnt] = (Edge){head[x], y, (Node){cos, val}};
    	head[x] = ecnt;
    }
    
    bool out[maxn]; 
    int dp[maxn], siz[maxn], cg = 0, Siz;
    In void dfs1(int now, int _f, int& cg)
    {
    	dp[now] = 0, siz[now] = 1;
    	forE(i, now, v)
    	{
    		if(v == _f || out[v]) continue;
    		dfs1(v, now, cg);
    		siz[now] += siz[v];
    		dp[now] = max(dp[now], siz[v]);
    	}
    	dp[now] = max(dp[now], Siz - siz[now]);
    	if(!cg || dp[now] < dp[cg]) cg = now;
    }
    
    Node a[maxn];
    int cnt = 0;
    In void dfs2(int now, int _f, Node t)
    {
    	if(t.cos > K) return;
    	a[++cnt] = t;
    	forE(i, now, v) if(!out[v] && v != _f) dfs2(v, now, t + e[i].t);
    }
    
    #define sNode set<Node>::iterator
    set<Node> s;
    In void merge()			//这个merge实在是太丑了 
    {
    	for(int i = 1; i <= cnt; ++i)
    	{
    		sNode it = s.lower_bound(a[i]), it2;
    		if(it != s.begin()) it2 = --it, ++it;
    		bool flg = 0;
    		if(!s.size()) flg = 1;
    		else if(it == s.end() && (*it2).val < a[i].val) flg = 1;
    		else if((*it).cos == a[i].cos && (*it).val < a[i].val) flg = 1;
    		else if((*it).cos > a[i].cos && (it == s.begin() || (*it2).val < a[i].val)) flg = 1;
    		if(flg)
    		{
    			while(it != s.end() && (*it).val <= a[i].val) s.erase(it++);
    			s.insert(a[i]);
    		}
    	}
    }
    int ans = 0;
    In void solve(int now)
    {
    	cg = 0;
    	dfs1(now, 0, cg);
    	s.clear(); s.insert((Node){0, 0});
    	forE(i, cg, x)
    	{
    		if(out[x]) continue;
    		cnt = 0;
    		dfs2(x, cg, e[i].t);
    		for(int j = 1; j <= cnt; ++j) 
    		{
    			bool flg = 0;
    			sNode it = s.lower_bound((Node){K - a[j].cos, 0});
    			if(it == s.end()) --it, flg = 1;
    			else if((*it).cos == K - a[j].cos) flg = 1;
    			else if(it != s.begin()) --it, flg = 1; 
    			if(flg) ans = max(ans, a[j].val + (*it).val);
    		}
    		merge();
    	}
    	out[cg] = 1;
    	forE(i, now, v) if(!out[v]) Siz = siz[v], solve(v);
    }
    In void init()
    {
    	Mem(head, -1), ecnt = -1;
    	Mem(out, 0); ans = 0;
    }
    
    int main()
    {
    //	MYFILE();
    	int T = read();
    	for(int id = 1; id <= T; ++id)
    	{
    		init();
    		n = read(), K = read();
    		for(int i = 1; i < n; ++i)
    		{
    			int x = read(), y = read(), cos = read(), val = read();
    			addEdge(x, y, cos, val), addEdge(y, x, cos, val);
    		}
    		Siz = n, solve(1);
    		printf("Case %d: %d
    ", id, ans);
    	}
    	return 0;	
    }
    
  • 相关阅读:
    tf.placeholder函数说明
    网易雷火 游戏研发一面 5.7
    【python3】with的用法
    一分钟理解softmax函数(超简单)
    网易雷火 笔试 4.25
    cun
    HDU-2045-RPG上色(递推)
    HDU-2050-折线分割平面 (递推)
    POJ-2389-Bull Math(高精度乘法)
    HDU-1002-A + B Problem II(高精度加法)
  • 原文地址:https://www.cnblogs.com/mrclr/p/13837451.html
Copyright © 2020-2023  润新知