Description
A lucky number is a number whose decimal representation contains only the digits (4) and (7). An almost lucky number is a number that is divisible by a lucky number. For example, (14), (36) and (747) are almost lucky, but (2) and (17) are not. Note that a number can be both lucky and almost lucky at the same time (for example, (747)).
You are given long longs a and b. Return the number of almost lucky numbers between (a) and$ (b) ,inclusive.
Input
Multiple test cases.
Each test cases is two number (a),(b) in a line seperated by a space.
(a) will be between (1) and (10^{10}), inclusive.
(b) will be between (a) and (10^{10}), inclusive.
Output
For each test case, output the answer in a single line.
Sample Input
1 10
14 14
1 100
1234 4321
Sample Output
3
1
39
1178
首先不难想到([1,10^{10}])内的lucky number不多,我们可以枚举出来,且可以去除包含关系(即若(a mid b),(b)就没有存在的必要了)。这样算下来本质上有用的lucky number个数(N)只是(O(10^3))级别。
首先答案每次区间可减性,即([a,b])的答案为([1,b])的答案减去([1,a-1])答案。对于区间([1,n]),我们显然可以用(2^N)的容斥原理。但是(N)太大,看上去(2^N)会TLE。但是由于LCM变化太大,当LCM比(n)大时候break复杂度就在期望的范围内了。但是可能需要卡卡常数(我懒得卡了)。
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
#define maxn (10010)
ll A,B,lucky[maxn]; int tot,N; bool exist[maxn];
inline ll gcd(ll a,ll b) { return b?gcd(b,a%b):a; }
inline void dfs(ll num,int logten)
{
if (logten > 10) return;
if (logten) lucky[++tot] = num;
dfs(num*10LL+4LL,logten+1); dfs(num*10LL+7LL,logten+1);
}
inline void DFS(ll range,ll &res,ll lcm,int now,int f)
{
if (now > N) { if (lcm > 1) res += (range/lcm)*f; return; }
DFS(range,res,lcm,now+1,f);
ll d = gcd(lcm,lucky[now]);
if (lcm <= (range*d+lucky[now])/lucky[now]&&lcm/d*lucky[now]<=range)
DFS(range,res,lcm/d*lucky[now],now+1,-f);
}
inline ll calc(ll range)
{
ll ret = 0;
DFS(range,ret,1,1,-1);
return ret;
}
int main()
{
freopen("3502.in","r",stdin);
freopen("3502.out","w",stdout);
dfs(0,0);
for (int i = 1;i <= tot;++i)
for (int j = 1;j <= tot;++j)
{
if (i == j) continue;
if (!(lucky[i] % lucky[j])) exist[i] = true;
}
for (int i = 1;i <= tot;++i) if (!exist[i]) lucky[++N] = lucky[i];
while (scanf("%lld %lld",&A,&B) != EOF) printf("%lld
",calc(B)-calc(A-1));
fclose(stdin); fclose(stdout);
return 0;
}