• 补充:奇异值分解的证明


    奇异值定义:设矩阵(A_{m imes n})的秩为(r),矩阵(A^TA)的特征值为(lambda_1 geq lambda_2 geq dots geq lambda_r > lambda_{r + 1} = dots = lambda_n = 0),则称(sigma_i = sqrt lambda_i (i = 1, 2, dots , n))为矩阵(A)的奇异值。

    奇异值分解定理:设矩阵(A_{m imes n})的秩为(r),则存在(m)阶正交矩阵(U)(n)阶正交矩阵(V),使得:

    [U^T AV = egin{pmatrix} Sigma & 0 \ 0 & 0 end{pmatrix} ]

    其中(Sigma = diag(sigma_1, sigma_2, dots ,sigma_r)),而(sigma_i(i = 1, 2, dots ,r))为矩阵(A)的全部非零特征值。

    证明:由于矩阵(A^TA)为对称阵,根据谱分解,因此可以对角化。不妨设,

    [V^TA^TAV = egin{pmatrix} lambda_1 & & \ & ddots & \ & & lambda_n end{pmatrix} = egin{pmatrix} Sigma^2 & 0 \ 0 & 0 end{pmatrix} ]

    将其记为((1))式,其中,

    [Sigma^2 = egin{pmatrix} sigma_1^2 & & \ & ddots & \ & & sigma_r^2 end{pmatrix} = egin{pmatrix} lambda_1 & & \ & ddots & \ & & lambda_r end{pmatrix} ]

    将正交矩阵(V)分块,记(V = (V_1, V_2)),其中(V_1)的大小为(n imes r)(V_2)的大小为(n imes (n - r))

    ((1))等式两侧左乘(V),由于(V^T = V^{-1}),可得:

    [A^TAV = V egin{pmatrix} Sigma^2 & 0 \ 0 & 0 end{pmatrix} ]

    即:

    [A^TA(V_1, V_2) = (V_1, V_2) egin{pmatrix} Sigma^2 & 0 \ 0 & 0 end{pmatrix} ]

    展开得:

    [(A^TAV_1, A^TAV_2) = (V_1Sigma^2, 0) ]

    因此,有如下等式成立:

    [A^TAV_1 = V_1Sigma^2 ]

    [A^TAV_2 = 0 ]

    分别记为((2))式和((3))式,
    ((2))等式两边同时左乘(V_1^T),得:

    [V_1^TA^TAV_1 = V_1^TV_1Sigma^2 = Sigma^2 ]

    然后等式两边左乘(Sigma^{-1}),右乘(Sigma^{-1}),得:

    [Sigma^{-1}V_1^TA^TAV_1Sigma^{-1} = Sigma^{-1}Sigma^2Sigma^{-1} ]

    由于((Sigma^{-1})^T = Sigma^{-1}),因此上式可以改写为:

    [(AV_1Sigma^{-1})^T(AV_1Sigma^{-1}) = I_r ]

    ((3))等式两边同时左乘(V_2^T),得:

    [V_2^TA^TAV_2 = (AV_2)^TAV_2 = 0 ]

    因此(AV_2 = 0)

    (U_1 = AV_1Sigma^{-1}),则由((11))(U_1^TU_1 = I_r)

    展开得:

    [U_1^TU_1 = egin{pmatrix} u_1^T \ vdots \ u_r^T end{pmatrix} egin{pmatrix} u_1, dots, u_r end{pmatrix} ]

    可得:

    [egin{cases} u_i^Tu_j = 1, i = j \ u_i^Tu_j = 0, i eq j end{cases} ]

    构造(U = (U_1, U_2))

    其中(U_2 = (u_{r + 1}, dots , u_m)),且有(U_1^TU_1 = I_r, U_2^TU_1 = 0)

    下证构造的(U, V)能够使得下式成立,

    [U^TAV = egin{pmatrix} Sigma & 0 \ 0 & 0 end{pmatrix} ]

    对于(U_1 = AV_1Sigma^{-1}),等式两边同时右乘(Sigma),得:(U_1Sigma = AV_1)

    [egin{aligned} U^TAV &= U^T(AV_1, AV_2) \ &= egin{pmatrix} U_1^T \ U_2^T end{pmatrix} (AV_1, AV_2) \ &= egin{pmatrix} U_1^T \ U_2^T end{pmatrix} (U_1Sigma, AV_2) \ &= egin{pmatrix} U_1^TU_1Sigma & 0 \ U_2^TU_1Sigma & 0 end{pmatrix} \ &= egin{pmatrix} Sigma & 0 \ 0 & 0 end{pmatrix} end{aligned} ]

    因此,奇异值分解定理成立!下面再对式子进行变形,

    [UU^TAVV^T = U egin{pmatrix} Sigma & 0 \ 0 & 0 end{pmatrix} V^T ]

    即,

    [A = U egin{pmatrix} Sigma & 0 \ 0 & 0 end{pmatrix} V^T ]

  • 相关阅读:
    awk中执行Linux命令的两种方式
    Hibernate-validator校验含javax.validation.constraints注解的对象其首次校验长耗时问题
    Linux系统查看端口常用命令
    简要记录搭建Nexus私服过程(发布和使用)
    简要记录搭建Nexus私服过程(配置)
    简要记录搭建Nexus私服过程(安装)
    [转载] jar包和war包的介绍和区别
    linux-exec
    linux-vim格式设置
    linux-array
  • 原文地址:https://www.cnblogs.com/miraclepbc/p/14535166.html
Copyright © 2020-2023  润新知