• [LeetCode 149] Max Points on a Line


    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
     
    Example 1:
    Input: [[1,1],[2,2],[3,3]]
    Output: 3
    Explanation:
    ^
    |
    |        o
    |     o
    |  o  
    +------------->
    0  1  2  3  4
    
    Example 2:
    Input: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
    Output: 4
    Explanation:
    ^
    |
    |  o
    |     o        o
    |        o
    |  o        o
    +------------------->
    0  1  2  3  4  5  6







     
     
    The O(N^2) solution is fairly straightforward, the tricky parts are how to accurately track slope and handling corner cases of horizontal and vertical lines.
     
    1. sort all points first by x then by y.
    2. count up all duplicated points P, then do a linear check to find the max number of points that can be on the same line with P. The answer is the max of all/
     
    Give a point p, check all other different points to get the max number of points that can be on the same line with p.  If we have a point p and a slope, we have one unique line passing p. We can then use a hashmap to track different slopes and the groups of points that are on that line of slope. The tricky part here is that we can not use double type to track slope due to the precision errors. We should use GCD to do this. We should also consider the horizontal and vertical lines corner cases separately. That's it:)
       
     
    class Solution {
        public int maxPoints(int[][] points) {
            if(points.length <= 1) return points.length;
            Arrays.sort(points, (p1, p2) -> {
                if(p1[0] != p2[0]) return p1[0] - p2[0];
                return p1[1] - p2[1];
            });
            int ans = 0, cnt = 1;
            for(int i = 1; i < points.length; i++) {
                if(points[i][0] == points[i - 1][0] && points[i][1] == points[i - 1][1]) {
                    cnt++;
                }
                else {
                    ans = Math.max(ans, maxWithPointK(points, i - 1) + cnt);
                    cnt = 1;
                }
            }
            ans = Math.max(ans, maxWithPointK(points, points.length - 1) + cnt); 
            return ans;
        }
        //gcd(dx, dy), if dy == 0, return dx
        private int gcd(int a, int b) {
            if(b == 0) {
                return a;
            }
            return gcd(b, a % b);
        }
        //O(N) time
        private int maxWithPointK(int[][] points, int k) {
            Map<List<Integer>, List<Integer>> map = new HashMap<>();
            for(int i = 0; i < points.length; i++) {
                int dx = points[i][0] - points[k][0];
                int dy = points[i][1] - points[k][1];
                //skip duplicated points 
                if(dx == 0 && dy == 0) continue;
                //slope = dy / dx
                List<Integer> slope = new ArrayList<>();
                int v1 = 0, v2 = 0;
                if(dx == 0) {
                    v1 = 0;
                    v2 = 0;
                }
                else if(dy == 0){
                    v1 = points[k][0];
                    v2 = 0;              
                }
                else {
                    int gcd = gcd(Math.abs(dx), Math.abs(dy));
                    v1 = Math.abs(dx) / gcd;
                    v2 = Math.abs(dy) / gcd;
                    if(dx > 0 && dy < 0 || dx < 0 && dy > 0) {
                        v1 *= -1;
                    }                    
                }
                slope.add(v1);
                slope.add(v2);
                map.putIfAbsent(slope, new ArrayList<>());
                List<Integer> p = map.get(slope);
                p.add(i);
            }
            int maxCnt = 0;
            for(Map.Entry<List<Integer>, List<Integer>> e : map.entrySet()) {
                maxCnt = Math.max(maxCnt, e.getValue().size());
            }
            return maxCnt;
        }
    }
  • 相关阅读:
    洛谷P3406 海底高铁[差分 贪心]
    POJ3398Perfect Service[树形DP 树的最大独立集变形]
    POJ3928Ping pong[树状数组 仿逆序对]
    UVALive
    UVALive
    http协议进阶(二)URL与资源
    http协议进阶(一)HTTP概述
    http协议基础(十)实体首部字段
    http协议基础(九)响应首部字段
    http协议基础(八)请求首部字段
  • 原文地址:https://www.cnblogs.com/lz87/p/7494078.html
Copyright © 2020-2023  润新知