• UVALive


    UVALive - 4108
    Time Limit: 3000MS     64bit IO Format: %lld & %llu

     Status uDebug

    Description

    Download as PDF
     

    The skyline of Singapore as viewed from the Marina Promenade (shown on the left) is one of the iconic scenes of Singapore. Country X would also like to create an iconic skyline, and it has put up a call for proposals. Each submitted proposal is a description of a proposed skyline and one of the metrics that country X will use to evaluate a proposed skyline is the amount of overlap in the proposed sky-line. 

    epsfbox{p4108a.eps}<tex2html_verbatim_mark>

    As the assistant to the chair of the skyline evaluation committee, you have been tasked with determining the amount of overlap in each proposal. Each proposal is a sequence of buildings, $ langle$b1b2,..., bn$ 
angle$ <tex2html_verbatim_mark>, where a building is specified by its left and right endpoint and its height. The buildings are specified in back to front order, in other words a building which appears later in the sequence appears in front of a building which appears earlier in the sequence. 

    The skyline formed by the first k <tex2html_verbatim_mark>buildings is the union of the rectangles of the first k <tex2html_verbatim_mark>buildings (see Figure 4). The overlap of a building, bi <tex2html_verbatim_mark>, is defined as the total horizontal length of the parts of bi <tex2html_verbatim_mark>, whose height is greater than or equal to the skyline behind it. This is equivalent to the total horizontal length of parts of the skyline behind bi<tex2html_verbatim_mark>which has a height that is less than or equal to hi <tex2html_verbatim_mark>, where hi <tex2html_verbatim_mark>is the height of building bi <tex2html_verbatim_mark>. You may assume that initially the skyline has height zero everywhere. 

    Input

    The input consists of a line containing the number c <tex2html_verbatim_mark>of datasets, followed by c <tex2html_verbatim_mark>datasets, followed by a line containing the number ` 0'. 

    The first line of each dataset consists of a single positive integer, n <tex2html_verbatim_mark>(0 < n < 100000) <tex2html_verbatim_mark>, which is the number of buildings in the proposal. The following n<tex2html_verbatim_mark>lines of each dataset each contains a description of a single building. The i <tex2html_verbatim_mark>-th line is a description of building bi <tex2html_verbatim_mark>. Each building bi <tex2html_verbatim_mark>is described by three positive integers, separated by spaces, namely, li <tex2html_verbatim_mark>, ri <tex2html_verbatim_mark>and hi <tex2html_verbatim_mark>, where li <tex2html_verbatim_mark>and rj <tex2html_verbatim_mark>(0 < li < ri$ le$100000) <tex2html_verbatim_mark>represents the left and right end point of the building and hi represents the height of the building. 

    epsfbox{p4108b.eps}<tex2html_verbatim_mark>

    Output

    The output consists of one line for each dataset. The c <tex2html_verbatim_mark>-th line contains one single integer, representing the amount of overlap in the proposal for dataset c<tex2html_verbatim_mark>. You may assume that the amount of overlap for each dataset is at most 2000000. 


    Note: In this test case, the overlap of building b1 <tex2html_verbatim_mark>, b2 <tex2html_verbatim_mark>and b3 <tex2html_verbatim_mark>are 6, 4 and 4 respectively. Figure 4 shows how to compute the overlap of building b3 <tex2html_verbatim_mark>. The grey area represents the skyline formed by b1 <tex2html_verbatim_mark>and b2 <tex2html_verbatim_mark>and the black rectangle represents b3 <tex2html_verbatim_mark>. As shown in the figure, the length of the skyline covered by b3 <tex2html_verbatim_mark>is from position 3 to position 5 and from position 11 to position 13, therefore the overlap of b3 <tex2html_verbatim_mark>is 4. 

    Sample Input

    1 
    3 
    5 11 3 
    1 10 1 
    3 13 2 
    0
    

    Sample Output

    14

    题意:在线区间[l,r]查询h是最大值的长度,并更新


    很明显区间max

    但怎么找这个长度overlap呢?

    如果当前区间满足ql<=l&&r<=qr&&h>=t[o].mx 那么就可以被完全覆盖

    用lazy维护区间完全覆盖中的最大值,h<t[o].lazy时就不用继续找了(因为h不可能覆盖这个区间了),有点像个剪枝

    否则必须继续找,下传lazy(无需清空自己的标记,剪枝嘛),合并mx

    lazy和mx还有点小细节,比如paint没有用lazy更新mx,其实这不影响,因为先if(h<t[o].lazy) return;了

    注意点是区间[i,i+1]

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define m (l+r)/2
    #define lson o<<1,l,m
    #define rson o<<1|1,m+1,r
    #define lc o<<1
    #define rc o<<1|1
    using namespace std;
    typedef long long ll;
    const int N=1e5+5;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    int T,n,ql,qr,h;
    struct node{
        int mx,lazy;//totally cover
    }t[N<<2];
    inline void pushDown(int o){
        if(t[o].lazy>t[lc].lazy) t[lc].lazy=t[o].lazy;
        if(t[o].lazy>t[rc].lazy) t[rc].lazy=t[o].lazy;
    }
    int lap=0;
    inline void update(int o,int l,int r,int ql,int qr,int h){
        if(h<t[o].lazy) return;
        if(ql<=l&&r<=qr&&h>=t[o].mx){
            t[o].mx=t[o].lazy=h;
            lap+=r-l+1;
        }else{
            pushDown(o);
            if(ql<=m) update(lson,ql,qr,h);
            if(m<qr) update(rson,ql,qr,h);
            t[o].mx=max(t[lc].mx,t[rc].mx);
        }
    }
    
    int main(){
        T=read();
        while(T--){
            n=read();
            int ans=0;
            memset(t,0,sizeof(t));
            for(int i=1;i<=n;i++){
                ql=read();qr=read()-1;h=read();
                lap=0;
                update(1,1,1e5,ql,qr,h);
                //printf("lap %d
    ",lap);
                ans+=lap;
            }
            printf("%d
    ",ans);
        }
    }
  • 相关阅读:
    cz_health_day07
    cz_health_day06
    mysql索引底层原理
    cz_health_day05
    redis无法获取连接原因分析
    cz_health_day04
    cz_health_day03
    cz_health_day02
    cz_health_day01
    Spring学习
  • 原文地址:https://www.cnblogs.com/candy99/p/5962412.html
Copyright © 2020-2023  润新知