UVA - 10375 |
Choose and divide
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4053 | Accepted: 1318 |
Description
The binomial coefficient C(m,n) is defined as
Given four natural numbers p, q, r, and s, compute the the result of dividing C(p,q) by C(r,s).
m!
C(m,n) = --------
n!(m-n)!
Given four natural numbers p, q, r, and s, compute the the result of dividing C(p,q) by C(r,s).
Input
Input consists of a sequence of lines. Each line contains four non-negative integer numbers giving values for p, q, r, and s, respectively, separated by a single space. All the numbers will be smaller than 10,000 with p>=q and r>=s.
Output
For each line of input, print a single line containing a real number with 5 digits of precision in the fraction, giving the number as described above. You may assume the result is not greater than 100,000,000.
Sample Input
10 5 14 9 93 45 84 59 145 95 143 92 995 487 996 488 2000 1000 1999 999 9998 4999 9996 4998
Sample Output
0.12587 505606.46055 1.28223 0.48996 2.00000 3.99960
Source
唯一分解定理
太诡异了,uva AC
poj一直TLE,连白书的标解都WA
// // main.cpp // poj2613 // // Created by Candy on 10/20/16. // Copyright ? 2016 Candy. All rights reserved. // #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int N=1e4+5; int p,q,r,s; int prime[N],cnt=0,e[N],vis[N]; void era(int n){ int m=sqrt(n)+1; for(int i=2;i<=m;i++) if(!vis[i]) for(int j=i*i;j<=n;j+=i) vis[j]=1; for(int i=2;i<=n;i++) if(!vis[i]) prime[++cnt]=i; } inline void mul(int x,int d){//x^d for(int i=1;i<=cnt&&x!=1;i++) while(x%prime[i]==0){ x/=prime[i]; e[i]+=d; } } void fac(int x,int d){//printf("%d %d ",x,d); for(int i=1;i<=x;i++) mul(i,d); } inline int fastPow(int a,int b){ int ans=1; for(;b;b>>=1,a*=a) if(b&1) ans*=a; return ans; } int main(int argc, const char * argv[]){ era(10000);//cout<<"p"; while(scanf("%d%d%d%d",&p,&q,&r,&s)!=EOF){ memset(e,0,sizeof(e)); fac(p,1); fac(q,-1); fac(p-q,-1); fac(r,-1); fac(s,1); fac(r-s,1); double ans=1; for(int i=1;i<=cnt;i++){ if(e[i]>0) ans*=(double)fastPow(prime[i],e[i]); else if(e[i]<0) ans/=(double)fastPow(prime[i],-e[i]); // ans*=pow(prime[i],e[i]); } printf("%.5f ",ans); } return 0; }