$f命题:$设$A in {M_n}left( F ight)$,证明:${F^n} = ext{Ker}left( A ight) oplus ext{Ker}left( {E - A} ight)$当且仅当$A$为幂等阵
参考答案
$f命题:$设$sigma in Lleft( {V,n,F} ight),fleft( x ight),gleft( x ight) in Fleft[ x ight]$,且$hleft( x ight) = fleft( x ight)gleft( x ight),left( {fleft( x ight),gleft( x ight)} ight) = 1$,证明:$$Kerhleft( sigma ight) = Kerfleft( sigma ight) oplus Kergleft( sigma ight)$$
$f命题:$设$A,B,C,D in Lleft( V ight)$且两两可交换,$AC + BD = E$,证明:$KerAB = KerA oplus KerB$
$f命题:$设$sigma in Lleft( {V,n,F} ight),V = {V_1} oplus {V_2}$,证明:$V = sigma left( {{V_1}} ight) oplus sigma left( {{V_2}} ight)$当且仅当$sigma $可逆
$f命题:$$f(02浙大九)$设$sigma in Lleft( {V,n,F} ight)$,则$V = operatorname{Im} left( sigma ight) oplus { ext{Ker}}left( sigma ight) Leftrightarrow rleft( {{sigma ^2}} ight) = rleft( sigma ight)$
1
$f命题:$设$V$是数域$P$上的$n$维线性空间,$sigma$是$V$上的线性变换,证明:$V=Imsigmaoplus Kersigma$当且仅当$Imsigma=Imsigma^{2}$
$f命题:$设$V$为实数域上$n$维线性空间,$f$为$V$上的正定对称双线性函数,$U$是$V$的有限子空间,$W = left{ {c in V|fleft( {c,b} ight) = 0,forall b in U} ight}$,证明:$V = U oplus W$
附录
$f命题:$设$A in {M_n}left( F ight)$,则下列命题等价
$(1)$${F^n}{ m{ = }}Nleft( A ight) oplus Rleft( A ight)$ $(2)$$Nleft( A ight) cap Rleft( A ight) = left{ 0 ight}$
$(3)$$Nleft( {{A^2}} ight) = Nleft( A ight)$ $(4)$$rleft( {{A^2}} ight) = rleft( A ight)$ $(5)$$Rleft( {{A^2}} ight) = Rleft( A ight)$
$f命题:$设$V$是数域$P$上的$n$维线性空间,$alpha_{1},alpha_{2},cdots,alpha_{n}$是$V$的一组基,令${V_1} = Lleft( {{alpha _1} + {alpha _2} + cdots + {alpha _n}} ight)$,且$$V_{2}={k_{1}alpha_{1}+k_{2}alpha_{2}+cdots+k_{n}alpha_{n}|sumlimits_{i=1}^{n}k_{i}=0,k_{i}in P}$$
证明:$V_{2}$是$V$的子空间,且$V=V_{1}oplus V_{2}$
参考答案
$f命题:$设$A in {M_n}left( F ight)$,且$A = left( {egin{array}{*{20}{c}}{{A_1}}\{{A_2}}end{array}} ight)$,证明:${F^n} = Kerleft( {{A_1}} ight) oplus Kerleft( {{A_2}} ight)$当且仅当$A$为可逆阵
参考答案
$f命题:$设${V_1} = left{ {left. {A in {M_n}left( F ight)} ight|{A^T} = A} ight},{V_2} = left{ {left. {A in {M_n}left( F ight)} ight|{A^T} = - A} ight}$,证明:${M_n}left( F ight) = {V_1} oplus {V_2}$
参考答案
$f命题:$设${V_1} = left{ {left. {A in {M_n}left( F ight)} ight|trleft( A ight) = 0} ight},{V_2} = left{ {left. {kE} ight|k in F} ight}$,证明:${M_n}left( F ight) = {V_1} oplus {V_2}$