(mathcal{Description})
Link.
给定排列 ({p_n}),求任意重排 (p_{l..r}) 的元素后,将 ({p_n}) 依次插入二叉搜索树时结点深度之和的最小值。
(nle10^5),(r-l+1le200)。
(mathcal{Solution})
先把不作修改的二叉搜索树建出来——按值升序遍历,单调栈维护即可,这就相当于建 ((p_i,i)) 的笛卡尔树。考虑此时树上一个“可修改连通块”的性质:它的“不可修改子树”的父亲和子树大小是一定的,无论这棵子树内部如何作修改。这提示我们可以独立地考虑每个“可修改连通块”。首先遍历得到连通块邻接的子树大小(若有空儿子,增加一个大小为 (0) 的子树,用于占位),得到序列 (a_{1..k}),则在其上 DP,令 (f(l,r)) 表示将 (a_{l..r}) 建出二叉搜索树的最小深度和,则:
[f(l,r)=left(r-l+sum_{iin[l,r]}a_i
ight)+min_{pin[l,r)}{f(l,p)+f(p+1,r)}.
]
所以 (mathcal O((r-l+1)^3)) 求出所有 (f),求和就能得到答案。复杂度 (mathcal O(n+(r-l+1)^3))。
(mathcal{Code})
/*~Rainybunny~*/
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
inline void chkmin( LL& a, const LL b ) { b < a && ( a = b ); }
const int MAXN = 1e5, MAXK = 200;
int n, a[MAXN + 5], b[MAXN + 5], L, R;
int top, stk[MAXN + 5], ch[MAXN + 5][2], siz[MAXN + 5];
int idx, val[MAXK + 5];
LL f[MAXK + 5][MAXK + 5], sum[MAXK + 5];
inline void collect( const int u ) {
if ( !u || b[u] > R ) return void( val[++idx] = siz[u] );
collect( ch[u][0] ), collect( ch[u][1] );
}
inline LL solve( const int u ) {
idx = 0, collect( u );
rep ( i, 1, idx ) sum[i] = sum[i - 1] + val[i];
rep ( len, 2, idx ) {
for ( int l = 1, r; ( r = l + len - 1 ) <= idx; ++l ) {
LL& cur = f[l][r] = 1ll << 60;
rep ( k, l, r - 1 ) {
chkmin( cur, f[l][k] + f[k + 1][r] );
}
cur += sum[r] - sum[l - 1] + r - l;
}
}
return f[1][idx];
}
int main() {
scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &a[i] ), b[a[i]] = i;
scanf( "%d %d", &L, &R );
rep ( i, 1, n ) {
while ( top && b[i] < b[stk[top]] ) ch[i][0] = stk[top--];
if ( top ) ch[stk[top]][1] = i;
stk[++top] = i;
}
per ( i, n, 1 ) siz[a[i]] = siz[ch[a[i]][0]] + siz[ch[a[i]][1]] + 1;
LL ans = L == 1 ? solve( a[1] ) : 0;
rep ( i, 1, n ) if ( b[i] < L || R < b[i] ) {
ans += siz[i];
if ( L <= b[ch[i][0]] && b[ch[i][0]] <= R ) ans += solve( ch[i][0] );
if ( L <= b[ch[i][1]] && b[ch[i][1]] <= R ) ans += solve( ch[i][1] );
}
printf( "%lld
", ans );
return 0;
}