(mathcal{Description})
Link.
给定 (m),和长度为 (n),字符集为大写字母的字符串 (s),求字符集相同且等长的字符串 (t) 的数量,使得 (s,t) 的 LCS 长度不小于 (n-m)。答案模 ((10^9+7))。
(nle5 imes10^4),(mle3)。
(mathcal{Solution})
有个傻瓜怕不是忘了 DP of DP 这种东西。
LCS 的 DP 信息是很方便压缩储存的,在决策 (t_{i+1}) 时,我们希望知道 (g_{i,max{0,i-m}..min{n,i+m}})((g_{i,j}) 即 (s[:i]) 和 (t[:j]) 的 LCS),记录第一个位置和其对应下标的差值(不超过 (m))以及后面位置的差分((01) 状态),可以得到一个 ((m+1)2^{2m}) 的压缩,转移枚举在这 (mathcal O(m)) 个内的字符,整体转移不在的字符,最劣复杂度为 (mathcal O(nm^22^{2m})),不过明显跑不满。
(mathcal{Code})
写得很丑就试了 qwq。
/*~Rainybunny~*/
#include <cstdio>
#include <cassert>
#include <cstring>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
const int MAXN = 5e4, MAXM = 3, MOD = 1e9 + 7;
int n, m, f[2][MAXM + 1][1 << 2 * MAXM];
char str[MAXN + 5];
/*
f(i,i-m), f(i,j-m+1), ..., f(i,i+m)
x , +[0] , +[...], +[2m-1]
*/
inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }
inline int mul( const int a, const int b ) { return int( 1ll * a * b % MOD ); }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
int main() {
scanf( "%s %d", str + 1, &m ), n = int( strlen( str + 1 ) );
str[0] = -1; rep ( i, 1, n ) str[i] -= 'A';
f[0][0][0] = 1;
for ( int i = 0, sta = 0; i < n; ++i, sta ^= 1 ) {
rep ( j, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
int& cur = f[sta][j][S];
if ( !cur ) continue;
// printf( "f(%d,%d,%d)=%d
", i, j, S, cur );
static bool vis[26] = {}; int cnt = 0;
int tp = imax( i - m, 0 ), sp = imax( i - m + 1, 0 ), u, v;
rep ( t, sp, imin( i + m + 1, n ) ) if ( t && !vis[str[t]] ) {
int c = str[t]; vis[c] = true, ++cnt;
int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
// f(i,j)=max{f(i-1,j),f(i,j-1),f(i-1,j-1)+1}.
rep ( k, sp, imin( i + m + 1, n ) ) {
u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
v = imax( imax( las[1], u ), las[0] + ( str[k] == c ) );
if ( k == sp ) {
fir = k - v;
if ( fir > m ) break;
} else T |= ( v > las[1] ) << ( k - sp - 1 );
las[0] = u, las[1] = v;
}
if ( fir <= m ) addeq( f[!sta][fir][T], cur );
}
{
int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
rep ( k, sp, imin( i + m + 1, n ) ) {
u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
v = imax( las[1], u );
if ( k == sp ) {
fir = k - v;
if ( fir > m ) break;
} else T |= ( v > las[1] ) << ( k - sp - 1 );
las[0] = u, las[1] = v;
}
if ( fir <= m ) addeq( f[!sta][fir][T], mul( cur, 26 - cnt ) );
}
rep ( t, sp, imin( i + m + 1, n ) ) if ( t ) vis[str[t]] = false;
cur = 0;
}
}
int ans = 0;
rep ( i, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
// if ( f[n & 1][i][S] )
// printf( "f(%d,%d,%d)=%d
", n, i, S, f[n & 1][i][S] );
assert( !f[n & 1][i][S] || !( S >> m ) );
if ( imax( n - m, 0 ) - i + __builtin_popcount( S ) >= n - m ) {
addeq( ans, f[n & 1][i][S] );
}
}
printf( "%d
", ans );
return 0;
}