• CF div2 334 B


    B. More Cowbell
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.

    Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.

    Input

    The first line of the input contains two space-separated integers n and k (1 ≤ n ≤ 2·k ≤ 100 000), denoting the number of cowbells and the number of boxes, respectively.

    The next line contains n space-separated integers s1, s2, ..., sn (1 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1 000 000), the sizes of Kevin's cowbells. It is guaranteed that the sizes si are given in non-decreasing order.

    Output

    Print a single integer, the smallest s for which it is possible for Kevin to put all of his cowbells into k boxes of size s.

    Sample test(s)
    input
    2 1
    2 5
    output
    7
    input
    4 3
    2 3 5 9
    output
    9
    input
    3 2
    3 5 7
    output
    8
    Note

    In the first sample, Kevin must pack his two cowbells into the same box.

    In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.

    In the third sample, the optimal solution is {3, 5} and {7}.

    给你N个按体积升序排列的球,有K个盒子,每个盒子里面最多装2个球。求使得让N个球按照要求装入K个盒子时,盒子容量最小的值。

    贪心,首先当k>=N时 答案就是体积最大球,当k<N时,有的盒子需要装入两个球,有的盒子需要装一个。那么能得到需要装一个球的有2K-N个,那么剩下的球需要两两装入一个盒子,这样的球有n-(2k-n)=2n-2k;

    然后贪心的去合并两个球 最小的球和最大球合并,一直循环下去,找到一个最大值就是满足条件的答案。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <queue>
     5 #include <vector>
     6 #include <stack>
     7 #include <cmath>
     8 
     9 using namespace std;
    10 
    11 const int M = 10005;
    12 const int maxn = 1000000;
    13 typedef long long LL;
    14 
    15 vector<int>G[maxn];
    16 queue<int>Q;
    17 stack<int>st;
    18 
    19 
    20 LL a[maxn];
    21 
    22 int main()
    23 {
    24 
    25   int n,k;
    26   cin>>n>>k;
    27   LL res = 0;
    28   for(int i=0;i<n;i++){
    29     cin>>a[i];
    30     res = max(res,a[i]);
    31   }
    32   for(int i=0;i<n-k;i++){
    33     res = max(res,a[i]+a[2*(n-k)-i-1]);
    34   }
    35   cout << res;
    36 
    37 
    38     return 0;
    39 }
    View Code
  • 相关阅读:
    P1908 逆序对
    P3834 【模板】可持久化线段树 1(主席树)
    BZOJ 4300: 绝世好题
    Codevs 2185【模板】最长公共上升子序列
    P1439 【模板】最长公共子序列
    P3865 【模板】ST表
    【转】良心的可持久化线段树教程
    Codevs 1299 切水果
    P3388 【模板】割点(割顶)&& 桥
    P3805 【模板】manacher算法
  • 原文地址:https://www.cnblogs.com/lmlyzxiao/p/5019091.html
Copyright © 2020-2023  润新知