数据结构是以某种形式将数据组织在一起的集合,不仅存储数据, 还支持访问和处理数据的操作.
基础的数据结构有:线性表(数组,链表),栈与队列,树与二叉树,图等
1. 冒泡
冒泡排序的思想: 每次比较两个相邻的元素, 如果他们的顺序错误就把他们交换位置。
快速排序使用分治法策略来把一个序列分为两个子序列。
步骤:
从数列中挑出一个元素,称为 "基准"(pivot),
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割结束之后,该基准就处于数列的中间位置。这个称为分割(partition)操作。
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
2.深度优先遍历和广度优先遍历的区别?
1) 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
2) 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
• 先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
• 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
• 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
3)深度优先搜索算法:不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。
广度优先搜索算法:保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。
通常 深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,一般在数据库中存储的结点数就是深度值,因此它占用空间较少。所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。
广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些