• BZOJ 2299 向量(裴蜀定理)


    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

    实际上前四个向量能拼出(ma,nb)(m%2=n%2).后四个向量拼出(xb,ya)(x%2=y%2).

    这样可以枚举这四个未知数在模二意义下的解。这两个向量相加为(ma+xb,nb+ya).

    对于ma+xb=X.根据系数的奇偶性,如果有系数为奇数,可使得等式两边都减去一个数使得系数都为偶数,这样再同除以二。

    就是一般的用裴蜀定理来判断这类方程是否有解的过程了。

    # include <cstdio>
    # include <cstring>
    # include <cstdlib>
    # include <iostream>
    # include <vector>
    # include <queue>
    # include <stack>
    # include <map>
    # include <bitset>
    # include <set>
    # include <cmath>
    # include <algorithm>
    using namespace std;
    # define lowbit(x) ((x)&(-x))
    # define pi acos(-1.0)
    # define eps 1e-8
    # define MOD 30031
    # define INF 1000000000
    # define mem(a,b) memset(a,b,sizeof(a))
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    # define FO(i,a,n) for(int i=a; i<n; ++i)
    # define bug puts("H");
    # define lch p<<1,l,mid
    # define rch p<<1|1,mid+1,r
    # define mp make_pair
    # define pb push_back
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    # pragma comment(linker, "/STACK:1024000000,1024000000")
    typedef long long LL;
    int Scan() {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    const int N=1000005;
    //Code begin...
    bool check(LL x, LL y, LL gcd){return x%gcd==0&&y%gcd==0;}
    int main ()
    {
        int T;
        LL a, b, x, y, gcd;
        scanf("%d",&T);
        while (T--) {
            scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
            if (a==0&&b==0) {puts(x==0&&y==0?"Y":"N"); continue;}
            if (a==0||b==0) gcd=(a==0?b:a);
            else gcd=__gcd(a,b);
            gcd*=2;
            if (check(x,y,gcd)||check(x-a,y-b,gcd)||check(x-b,y-a,gcd)||check(x-a-b,y-a-b,gcd)) puts("Y");
            else puts("N");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    安装一个Linux 罗晓杜
    基本正则表达 罗晓杜
    安装MySQL 罗晓杜
    复选框返回选中项ID到后台
    软件工程的理解
    作业一:计科131邵楠
    javascript中函数和方法的区别
    Javascript动画系列之 —— lightbox实现(一)
    如何让自己的javascript代码具有可维护性?
    javascript动画系列 —— 切换图片(原生)
  • 原文地址:https://www.cnblogs.com/lishiyao/p/6906289.html
Copyright © 2020-2023  润新知