• word2vec模型与LSTM模型联合使用


    ```python
    # region 加载库,基础参数配置
    # 运行前下载数据集
    # wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
    # tar xvf simple-examples.tgz
    # 下载PTB,借助reader读取数据内容,将单词转为唯一的数字编码
    # git clone https://github.com/tensorflow/models.git
    # 如果代码运行时出现TypeError: a bytes-like object is required, not 'str'
    # 则将models/tutorials/rnn/ptb/reader.py中的return f.read().replace("
    ", "<eos>").split() 改成f.read().decode("utf-8").replace("
    ", "<eos>")
    
    import time
    import numpy as np
    import tensorflow as tf
    from tensorflow.contrib import rnn
    # 把解压后的ptb路径添加进系统路径,这样这样系统才能找到并载入reader
    import sys
    # 本程序文件能够运行,说明本文件夹正是系统路径之一,所以系统会把这个相对路径附加到本程序路径下。
    sys.path.append('models/tutorials/rnn/ptb')
    import reader
    # endregion
    
    # region 模型参数类,用于配置构建和执行计算图的参数
    # 封装好参数,方便训练前选择配置。
    # 小模型。本代码用到的模型参数。
    class SmallConfig(object):
    init_scale = 0.1 # 网络中权重值的初始scale
    learning_rate = 1.0 # 学习速率的初始值
    max_grad_norm = 5 # 梯度的最大范数
    num_layers = 2 # LSTM可以堆叠的层数
    num_steps = 20 # LSTM梯度反向传播的展开步数
    hidden_size = 200 # LSTM内的隐含节点数
    max_epoch = 1#4 # 初始学习速率可训练的epoch数,在此之后需要调整学习速率
    max_max_epoch = 13 # 总共可以训练的epoch数
    keep_prob = 1.0 # 保留节点的比率
    lr_decay = 0.5 # 学习速率的衰减速度
    batch_size = 20 # 每个batch中样本的数量
    vocab_size = 10000
    
    # 中型模型
    class MediumConfig(object):
    init_scale = 0.05 # 减小了init_scale,即希望权重初值不要过大,小一些有利于温和的训练.被tf.random_uniform_initializer()调用
    learning_rate = 1.0
    max_grad_norm = 5
    num_layers = 2
    num_steps = 35 # 从20增大到了35
    hidden_size = 650 # 伴随num_steps,也相应地增大了约3倍
    max_epoch = 6
    max_max_epoch = 39
    keep_prob = 0.5 # 引入dropout
    lr_decay = 0.8 # 因为学习的迭代次数增大,所以学习速率的衰减速度减小了。
    batch_size = 20
    vocab_size = 10000
    
    # 大型模型
    class LargeConfig(object):
    init_scale = 0.04 # 进一步缩小init_scale
    learning_rate = 1.0
    max_grad_norm = 10 # 放宽范数到10
    num_layers = 2
    num_steps = 35
    hidden_size = 1500 # 提升到1500
    max_epoch = 14 # 增大
    max_max_epoch = 55 # 增大
    keep_prob = 0.35 # 模型复杂度上升,keep_prob调小
    lr_decay = 1 / 1.15 # 学习速率的衰减速度进一步减小。
    batch_size = 20
    vocab_size = 10000
    
    # 测试用,所有的参数都尽量使用最小值,为了测试可以完整运行模型
    class TestConfig(object):
    init_scale = 0.1
    learning_rate = 1.0
    max_grad_norm = 1
    num_layers = 1
    num_steps = 2
    hidden_size = 2
    max_epoch = 1
    max_max_epoch = 1
    keep_prob = 1.0
    lr_decay = 0.5
    batch_size = 20
    vocab_size = 10000
    
    # 配置参数,供下文的tf.Graph()和sv.managed_session()中使用。
    config = SmallConfig() # 配置训练时(广义的训练,包括train和valid)的参数
    eval_config = SmallConfig() # 配置测试时(即test)的参数。除了以下两个参数设为1,其他的参数全部与训练时相同。
    eval_config.batch_size = 1 # 一个batch中样本的数量
    eval_config.num_steps = 1 # LSTM的展开步数(unrolled steps of LSTM)
    
    # endregion
    
    # region 0 原始数据读入
    # 包含三类。用于下文的tf.Graph()中调用输入数据类PTBInput()初始化出三种数据对象
    # 本程序文件能够运行,说明本文件夹正是系统路径之一,所以可以直接填相对路径
    # 从raw_data中得到训练数据,验证数据,测试数据。
    raw_data = reader.ptb_raw_data('simple-examples/data/')
    train_data, valid_data, test_data, _ = raw_data
    # endregion
    
    # region 1 计算图构建类
    
    # region 1.1 参数配置/数据装载类
    # 定义输入数据类
    # 将在tf.Graph()中用于实例化三个数据对象:train_input、valid_input、test_input
    # 注意,每个数据对象均包含input_data和targets
    class PTBInput(object):
    def __init__(self, config, data, name=None):
    self.batch_size = batch_size = config.batch_size
    # LSTM的展开步数(unrolled steps of LSTM)
    self.num_steps = num_steps = config.num_steps
    # 每一个epoch内需要的多少轮迭代
    self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
    # 获取特征数据input_data,label数据targets,每次执行获取一个batch的数据。
    #
    # self.targets的shape是[batch_size,num_steps]
    self.input_data, self.targets = reader.ptb_producer(data, batch_size, num_steps, name=name)
    # endregion
    
    # region 1.2 模型类
    # 定义语言模型类
    # 将在tf.Graph()中被实例化了三次,生成三个模型对象:m、mvalid、mtest
    # 例如m=PTBModel(is_training=True, config=config, input_=train_input),
    # 其中,train_input是PTBInput()类传入原始数据完成实例化后的对象。
    # 包含3类方法:模型初始化方法__init__(),学习速率更新的执行方法assign_lr(),属性读取方法(6个)
    class PTBModel(object):
    
    def __init__(self, is_training, config, input_):
    
    # region 配置参数
    self._input = input_ # self._input仅被用于这个类的属性返回方法.在这个初始化方法内部直接用input_
    batch_size = input_.batch_size
    num_steps = input_.num_steps
    # hidden_size是LSTM的节点数
    size = config.hidden_size
    # vocab_size是词汇表的大小
    vocab_size = config.vocab_size
    # endregion
    
    # region 输入数据向量化
    # 词嵌入embedding部分
    # 将one-hot格式的单词转化为向量形式
    with tf.device("/cpu:0"):
    # 初始化embedding矩阵,行数设为词汇表vocab_size,列数(即每个单词的向量表达的维数)设为hidden_size(即LSTM单元中的隐含节点数)。
    embedding = tf.get_variable("embedding", [vocab_size, size], dtype=tf.float32)
    # 查询单词对应的向量表达式inputs。
    # input_是在该类被外部实例化时传入的,因此不需要占位符
    # input_.input_data shape=[batch_size]
    inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
    # inputs的shape =[batch_size,embedding_size]
    # 如果处于训练状态,且keep_prob小于1,则再添一个Dropout层
    if is_training and config.keep_prob < 1:
    inputs = tf.nn.dropout(inputs, config.keep_prob)
    # endregion
    
    # region 定义LSTM结构
    # 设置默认的LSTM单元个数。利用tf.contrib.rnn.BasicLSTMCell()
    def lstm_cell():
    #传入的size为是LSTM的节点数,forget_bias即为forget gate的bias,state_is_tuple=True表示接收和返回的state是2-tuple形式
    return rnn.BasicLSTMCell(
    size, forget_bias=0.0, state_is_tuple=True)
    # 如果是训练中,则这句没意义,因为之后的if语句会重新定义attn_cell()就成了一个后接dropout 的cell层
    # 如果不是训练中,则这句就起到承前启后,跳过if语句,使cell层顺利堆叠.
    attn_cell = lstm_cell
    # 如果处于训练状态,且keep_prob小于1,则在lstm_cell之后接一个Dropout层
    if is_training and config.keep_prob < 1:
    def attn_cell():
    return rnn.DropoutWrapper(lstm_cell(), output_keep_prob=config.keep_prob)
    # 设置LSTM的堆叠层数
    # 使用RNN堆叠函数将前面构造的lstm_cell多层堆叠成cell,堆叠次数为config.num_layers
    # 如果num_layers是2,则结果形如[attn_cell() attn_cell()]
    cell = rnn.MultiRNNCell(
    [attn_cell() for _ in range(config.num_layers)], state_is_tuple=True)
    # 有了LSTM cell,初始化cell为0。
    # LSTM单元读入一个单词并结合之前储存的状态state计算下一个单词出现的概率分布,每次读取一个单词后它的状态state会被更新。
    # 经过初始化,这里的self._initial_state就表征cell的初始状态,会由m.inital_state拿出来供外部使用,也会在本类下文中拿来初始化state。
    # state的shape是[batch_size,size*num_layers]
    self._initial_state = cell.zero_state(batch_size, tf.float32)
    # endregion
    
    # region 定义前向计算和cost
    
    # 设置LSTM的时间序列的深度num_step.
    inputs = tf.unstack(inputs, num=num_steps, axis=1)
    # state的shape是[batch_size,size*num_layers]
    # outputs的shape就是[batch_size,num_steps,size]
    outputs, state = rnn.static_rnn(cell, inputs,
    initial_state=self._initial_state)
    '''
    # 定义输出outputs
    outputs = []
    state = self._initial_state
    with tf.variable_scope("RNN"):
    # 将接下来的操作名称设为RNN
    # 限制梯度在反向传播时可以展开的步数为一个固定值,即步数num_steps
    for time_step in range(num_steps):
    # 从第二次循环开始,设置复用变量
    if time_step > 0:
    tf.get_variable_scope().reuse_variables()
    # 每次循环内,传入inputs和state到堆叠的LSTM单元(即cell)中
    # inputs有三个维度,含义依次是:batch中第几个样本,样本中第几个单词,单词的向量表达的维度。
    # inputs[:, time_step, :]代表所有样本的第time_step个单词。
    # 得到输出cell_output和更新后的state。
    (cell_output, state) = cell(inputs[:, time_step, :], state)
    # 将time_step这个时间点的cell_output(shape是[batch_size,size])添加到输出列表中。
    outputs.append(cell_output)
    #当循环结束,outputs是一个有num_steps个元素的列表,每个元素的shape就是[batch_size,size]
    '''
    
    # 将outputs的内容串联起来,并转换为一维向量。
    # tf.concat(outputs, 1)的shape就是[batch_size*num_steps,size]
    # [-1,size]就表示每行必须是第二维必须是size个元素,然后第一维度是多少就是多少.
    # 结果就是output的shape就是[batch_size*num_steps,size],相当于不变.
    output = tf.reshape(tf.concat(outputs, 1), [-1, size])
    # softmax层
    softmax_w = tf.get_variable(
    "softmax_w", [size, vocab_size], dtype=tf.float32)
    softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=tf.float32)
    # 输出的logits的shape是[batch_size*num_steps,vocab_size] 
    logits = tf.matmul(output, softmax_w) + softmax_b
    # 损失函数,计算输出logits和targets的偏差
    # 这里的sequence_loss即target words的average negative log probability,
    # 其定义是loss=-(1/N)*[lnP(target_1)+lnP(target_2)+...+lnP(target_N)],其中P(target_N)是target N的概率。
    # tf.contrib.legacy_seq2seq.sequence_loss_by_example返回一个序列的交叉熵的和
    loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
    [logits],# 预测值
    [tf.reshape(input_.targets, [-1])],
    # 把标签值的shape[batch_size,num_steps]二维数组压缩成一维数组
    [tf.ones([batch_size * num_steps], dtype=tf.float32)]
    # 损失的权重,在这里所有的权重都为1,也就是说不同batch和不同时刻的重要程度是一样的
    )
    # 汇总batch的误差,计算平均到每个样本的平均损失
    self._cost = cost = tf.reduce_sum(loss) / batch_size
    # 保留最终的状态为final_state
    self._final_state = state
    # endregion
    
    # region 定义训练操作
    # 只有训练模型时,才会执行这部分
    if not is_training:
    return
    # 定义学习速率_lr
    # 并将其设为不可训练
    self._lr = tf.Variable(0.0, trainable=False)
    # 定义优化器SGD
    optimizer = tf.train.GradientDescentOptimizer(self._lr)
    # 定义训练op
    # minimize分两步,先取compute_gradient,再用apply_gradient
    # 获取全部可训练参数tvars
    tvars = tf.trainable_variables()
    # 针对前面得到的cost,计算tvars的梯度,并设置梯度的最大范数max_grad_norm
    # 这就是Gradient Clipping方法,控制梯度的最大范数,某种程度上起到正则化的效果,可防止梯度爆炸。
    grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),config.max_grad_norm)
    # apply_gradients()将前面clip过的梯度应用到所有可训练的参数tvars上。
    # 使用get_or_create_global_step()生成全局统一的训练步数。
    self._train_op = optimizer.apply_gradients(
    zip(grads, tvars),
    global_step=tf.contrib.framework.get_or_create_global_step())
    # 定义学习率更新op
    # 以下两句的意思是:如果传入了新的学习速率self._new_lr,那么就把新的学习速率self._new_lr赋给self._lr
    self._new_lr = tf.placeholder(
    tf.float32, shape=[], name="new_learning_rate")
    # 定义操作_lr_update,它使用tf.assign()将_new_lr的值赋给当前的学习速率_lr
    self._lr_update = tf.assign(self._lr, self._new_lr)
    # endregion
    
    # region 学习速率更新方法
    # 只需要调用 模型m的m.assign_lr(session,新的学习速率值),assign_lr()内部就把新的学习速率值feed给self._new_lr,执行session._lr_update张量。
    # 相当于调用了上面的这两句,实现了在外部就可以控制模型的学习速率
    def assign_lr(self, session, lr_value):
    # session.run(tf.assign(self._lr, lr_value))
    session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
    # endregion
    
    # region 6个属性读取方法
    # 用@property装饰器将返回变量设为只读,防止修改变量引发的问题,方便外部访问。
    # 因为被当做属性使用,访问时不用带括号,如果模型名为m,则访问的形式可以是 m.lr或m.cost或m.initial_state
    @property
    def input(self):
    return self._input
    @property
    def initial_state(self):
    return self._initial_state
    @property
    def cost(self):
    return self._cost
    @property
    def final_state(self):
    return self._final_state
    @property
    def lr(self):
    return self._lr
    @property
    def train_op(self):
    return self._train_op
    # endregion
    
    # endregion
    
    # endregion
    
    # region 2 计算图执行函数
    # 训练一个epoch数据的模型执行函数
    # 训练时从外部调用run_epoch(session, m, eval_op=m.train_op,verbose=True),输出epoch的进度 + perplexity + 训练速度 ,并返回训练结果perplexity。
    # 验证或测试时从外部调用run_epoch(session, model),只返回验证或测试结果perplexity。
    # 本函数体内,执行了两次session,分别是session.run(model.initial_state)和session.run(fetches, feed_dict)
    def run_epoch(session, model, eval_op=None, verbose=False):
    start_time = time.time()
    costs = 0.0
    iters = 0
    # 执行model.initial_state获得初始状态,即PTBModel的cell.zero_state(batch_size, tf.float32)值
    state = session.run(model.initial_state)
    
    # region 以下是拿到cost和state
    fetches = {
    "cost": model.cost, # 即张量m.cost
    "final_state": model.final_state, # 即张量m.final_state
    }
    # 只有在训练时才能进入这句if语句
    if eval_op is not None:
    fetches["eval_op"] = eval_op # 传入的是m.train_op,即m内的张量self._train_op
    # 以下的for循环,是为了计算perplexity
    for step in range(model.input.epoch_size): # 次数为epoch_size
    # 每次循环前,生成训练用的空feed_dict
    feed_dict = {}
    for i, (c, h) in enumerate(model.initial_state):
    feed_dict[c] = state[i].c
    feed_dict[h] = state[i].h
    # 通过上面这个for循环,将全部的LSTM单元的state加入到feed_dict中
    # 传入feed_dict,执行fetches,对网络进行一次训练
    # fetches之所以能被且必须被执行,是因为fetches字典里每个元素的value都是tensor,
    vals = session.run(fetches, feed_dict)
    cost = vals["cost"]
    state = vals["final_state"]
    # endregion
    
    costs += cost
    iters += model.input.num_steps
    # 只有训练时(传入的verbose才是True),才能进入下面的if和print语句,即每完成10%的epoch,就进行一次结果的展示。
    # 如果不是训练,则跳过if+print,结束本次循环,进入下一个step循环,直到epoch_size跑完。
    if verbose and step % (model.input.epoch_size // 10) == 10:
    # perplexity即平均cost的自然常数指数,越低代表模型的输出概率分布在预测样本上越好
    print("%.3f perplexity: %.3f speed: %.0f wps" %
    (step * 1.0 / model.input.epoch_size, # 当前epoch的进度
    np.exp(costs / iters), # perplexity
    iters * model.input.batch_size / (time.time() - start_time) # 训练速度(每秒的单词数)
    )
    )
    # 返回perplexity,作为本函数run_epoch()结果。
    return np.exp(costs / iters)
    # endregion
    
    # tf.Graph()内部调用PTBInput()和PTBModel(),初始化三种数据对象和模型对象,为下文sv的训练测试做好了准备。
    with tf.Graph().as_default():
    
    # region 3 构建计算图
    # 设置参数的初始化器,参数范围在-init_scale,init_scale之间。
    initializer = tf.random_uniform_initializer(-config.init_scale,
    config.init_scale)
    # region 3.1 构建训练模型m
    with tf.name_scope("Train"):
    train_input = PTBInput(config=config, data=train_data, name="TrainInput")
    with tf.variable_scope("Model", reuse=None, initializer=initializer):# 注意reuse
    m = PTBModel(is_training=True, config=config, input_=train_input)
    #tf.scalar_summary("Training Loss", m.cost)
    #tf.scalar_summary("Learning Rate", m.lr)
    # endregion
    
    # region 3.2 构建验证模型mvalid
    with tf.name_scope("Valid"):
    valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
    with tf.variable_scope("Model", reuse=True, initializer=initializer):
    # 运用之前训练好的模型的参数来测试他们的效果,故定义reuse = True。
    mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
    #tf.scalar_summary("Validation Loss", mvalid.cost)
    # endregion
    
    # region 3.3 构建测试模型mtest
    with tf.name_scope("Test"):
    test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
    with tf.variable_scope("Model", reuse=True, initializer=initializer):
    # 运用之前训练好的模型的参数来测试他们的效果,故定义reuse=True。
    mtest = PTBModel(is_training=False, config=eval_config,
    input_=test_input)
    # endregion
    # endregion
    
    # region 4 执行计算图
    # 创建训练的管理器sv
    # 在sv里,主要负责输出:每轮的学习率,每轮训练后的自然常数指数(run_epoch()返回值),每轮验证时的自然常数指数(run_epoch()返回值)。
    # 在max_max_epoch(例如13轮)结束后,输出测试的自然常数指数。
    # 在训练阶段,run_epoch()会输出“当前epoch的进度 perplexity 训练速度(每秒的单词数)”。
    sv = tf.train.Supervisor()
    with sv.managed_session() as session:# 创建默认的session
    for i in range(config.max_max_epoch):# 前面config = SmallConfig()里max_max_epoch=13,即总共可以训练的epoch数
    
    # region 执行更新学习速率,并输出显示
    # 先计算累计的学习速率衰减值。
    # max_epoch被初始化为4,则前4轮lr_decay=1,只有当到第5轮(i=4)时,lr_decay=0.5**1=0.5,之后以0.5倍加速衰减。
    lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
    # 更新学习速率。用初始学习速率×累计的衰减
    # m是tf.Graph()中定义的训练模型,assigh_lr()是PTBModel()函数中的方法。
    m.assign_lr(session, config.learning_rate * lr_decay)
    # 执行一个epoch的训练,并输出当前的学习速率。
    # 例如第2轮,即输出 Epoch: 2 Learning rate: 1.000
    print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) # 即通过PTBModel()中@property修饰的lr()来获取
    # endregion
    
    # region 4.1 执行训练
    # 输出训练集上的perplexity,即平均cost的自然常数指数
    train_perplexity = run_epoch(session, m, eval_op=m.train_op,
    verbose=True)
    print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
    # endregion
    
    # region 4.2 执行验证
    # 输出验证集上的perplexity
    valid_perplexity = run_epoch(session, mvalid)
    print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
    # endregion
    
    # region 4.3 执行测试
    #完成所有循环后,计算并输出测试集上的perplexity
    test_perplexity = run_epoch(session, mtest)
    print("Test Perplexity: %.3f" % test_perplexity)
    # endregion
    
    # endregion
  • 相关阅读:
    BZOJ3473: 字符串
    BZOJ1088: [SCOI2005]扫雷Mine
    跪啃SAM
    BZOJ3932: [CQOI2015]任务查询系统
    BZOJ3545: [ONTAK2010]Peaks
    06.约束
    05.数据表的创建与简单操作
    04.数据库的创建
    安卓6.0后运行时权限封装
    OkGo使用缓存
  • 原文地址:https://www.cnblogs.com/kpwong/p/13586406.html
Copyright © 2020-2023  润新知