• 稀疏矩阵乘法


    #include <iostream>
    #include <malloc.h>
    #include <cstdio>
    using namespace std;
    #define M	4
    #define N	4
    #define MaxSize 100
    typedef int ElemType;
    typedef struct
    {
    	int		r;
    	int		c;
    	ElemType	d;      /* /元素值 */
    } TupNode;                      /* /三元组定义 */
    typedef struct
    {
    	int	rows;
    	int	cols;
    	int	nums;
    	TupNode data[MaxSize];
    } TSMatrix;                     /* /三元组顺序表定义 */
    void CreatMat( TSMatrix &t, ElemType A[M][N] )
    {
    	t.rows	= M;
    	t.cols	= N;
    	t.nums	= 0;
    	for ( int i = 0; i < M; i++ )
    		for ( int j = 0; j < N; j++ )
    			if ( A[i][j] != 0 )
    			{
    				t.data[t.nums].r	= i;
    				t.data[t.nums].c	= j;
    				t.data[t.nums].d	= A[i][j];
    				t.nums++;
    			}
    }
    
    
    bool Value( TSMatrix &t, ElemType x, int i, int j )
    {
    	int k = 0, k1;
    	if ( i >= t.rows || j >= t.cols )
    		return(false);
    	while ( k<t.nums &&i>t.data[k].r )
    		k++;
    	while ( k<t.nums &&i == t.data[k].r &&j>t.data[k].c )
    		k++;
    	if ( t.data[k].r == i && t.data[k].c == j )
    		t.data[k].d = x;
    	else{
    		for ( k1 = t.nums - 1; k1 >= k; k1-- )
    		{
    			t.data[k1 + 1].r	= t.data[k].r;
    			t.data[k1 + 1].c	= t.data[k].c;
    			t.data[k1 + 1].d	= t.data[k].d;
    		}
    		t.data[k].r	= i;
    		t.data[k].c	= j;
    		t.data[k].d	= x;
    		t.nums++;
    	}
    	return(true);
    }
    
    
    bool Assign( TSMatrix t, ElemType &x, int i, int j )
    {
    	int k = 0;
    	if ( i >= t.rows || j >= t.cols )
    		return(false);
    	while ( k<t.nums &&i>t.data[k].r )
    		k++;
    	while ( k<t.nums &&i == t.data[k].r &&j>t.data[k].c )
    		k++;
    	if ( t.data[k].r == i && t.data[k].c == j )
    		x = t.data[k].d;
    	else
    		x = 0;
    	return(true);
    }
    
    
    void DispMat( TSMatrix t )
    {
    	if ( t.nums <= 0 )
    		return;
    	printf( "	%d	%d	%d
    ", t.rows, t.cols, t.nums );
    	printf( "	-----------------
    " );
    	for ( int i = 0; i < t.nums; i++ )
    		printf( "	%d	%d	%d
    ", t.data[i].r, t.data[i].c, t.data[i].d );
    }
    
    
    void TranMat( TSMatrix t, TSMatrix &tb )
    {
    	int i, j, k = 0;
    	tb.rows = t.cols;
    	tb.cols = t.rows;
    	tb.nums = t.nums;
    	if ( t.nums != 0 )
    	{
    		for ( i = 0; i < t.cols; i++ )
    			for ( j = 0; j < t.nums; j++ )
    				if ( t.data[j].c == i )
    				{
    					tb.data[k].r	= t.data[j].c;
    					tb.data[k].c	= t.data[j].r;
    					tb.data[k].d	= t.data[j].d;
    					k++;
    				}
    	}
    }
    
    
    bool MatAdd( TSMatrix a, TSMatrix b, TSMatrix &c )
    {
    	int		i = 0, j = 0, k = 0;
    	ElemType	v;
    	if ( a.rows != b.rows || a.cols != b.cols )
    		return(false);
    	c.rows	= a.rows;
    	c.cols	= a.cols;
    	while ( i < a.nums && j < b.nums )
    	{
    		if ( a.data[i].r == b.data[j].r ) /* /先控制行相等 */
    		{
    			if ( a.data[i].c < b.data[j].c )
    			{
    				c.data[k].r	= a.data[i].r;
    				c.data[k].c	= a.data[i].c;
    				c.data[k].d	= a.data[i].d;
    				k++;
    				i++;
    			}else if ( a.data[i].c > b.data[j].c )
    			{
    				c.data[k].r	= b.data[j].r;
    				c.data[k].c	= b.data[j].c;
    				c.data[k].d	= b.data[j].d;
    				k++;
    				j++;
    			}else  {
    				v = a.data[i].d + b.data[j].d;
    				if ( v != 0 )
    				{
    					c.data[k].r	= a.data[i].r;
    					c.data[k].c	= a.data[i].c;
    					c.data[k].d	= v;
    					k++;
    				}
    				i++;
    				j++;
    			}
    		}else if ( a.data[i].r < b.data[j].r )
    		{
    			c.data[k].r	= a.data[i].r;
    			c.data[k].c	= a.data[i].c;
    			c.data[k].d	= a.data[i].d;
    			k++;
    			i++;
    		}else  {
    			c.data[k].r	= b.data[j].r;
    			c.data[k].c	= b.data[j].c;
    			c.data[k].d	= b.data[j].d;
    			k++;
    			j++;
    		}
    		c.nums = k;
    	}
    	return(true);
    }
    
    
    int getvalue( TSMatrix c, int i, int j )
    {
    	int k = 0;
    	while ( k < c.nums && (c.data[k].r != i || c.data[k].c != j) )
    		k++;
    	if ( k < c.nums )
    		return(c.data[k].d);
    	else
    		return(0);
    }
    
    
    bool MatMul( TSMatrix a, TSMatrix b, TSMatrix &c )
    {
    	int		i, j, k, p = 0;
    	ElemType	s;
    	if ( a.cols != b.rows )
    		return(false);
    	for ( i = 0; i < a.rows; i++ )
    		for ( j = 0; j < b.cols; j++ )
    		{
    			s = 0;
    			for ( k = 0; k < a.cols; k++ )
    				s += getvalue( a, i, k ) * getvalue( b, k, j );
    			if ( s != 0 )
    			{
    				c.data[p].r	= i;
    				c.data[p].c	= j;
    				c.data[p].d	= s;
    				p++;
    			}
    		}
    	c.rows	= a.rows;
    	c.cols	= b.cols;
    	c.nums	= p;
    	return(true);
    }
    
    
    int main()
    {
    	ElemType	a1[N][N]	= { { 1, 0, 3, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 1, 1 } };
    	ElemType	b1[M][M]	= { { 3, 0, 0, 0 }, { 0, 4, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 2 } };
    	TSMatrix	a, b, c;
    	CreatMat( a, a1 );
    	CreatMat( b, b1 );
    	printf( "a的三元组:
    " );
    	DispMat( a );
    	printf( "b的三元组:
    " );
    	DispMat( b );
    	printf( "a转置为c
    " );
    	TranMat( a, c );
    	printf( "c的三元组
    " );
    	DispMat( c );
    	printf( "c=a+b
    " );
    	MatAdd( a, b, c );
    	printf( "c的三元组:
    " );
    	DispMat( c );
    	printf( "c=a*b
    " );
    	MatMul( a, b, c );
    	printf( "c的三元组:
    " );
    	DispMat( c );
    	return(0);
    }
    

      

  • 相关阅读:
    约束性组件和非约束性组件
    react事件中的事件对象和常见事件
    react事件中的this指向
    【Java】操作数据库
    【设计思想】MVC模式
    【设计思想】面向对象
    【Java】(机考常用)类集
    【Java】机考常用操作
    【数据库】三级模式、二级映射
    【软件测试】圈复杂度
  • 原文地址:https://www.cnblogs.com/kaleidoscope/p/9910346.html
Copyright © 2020-2023  润新知