• 100天搞定机器学习|Day1数据预处理



    数据预处理是机器学习中最基础也最麻烦的一部分内容
    在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定
    在之后的每个算法实现和案例练手过程中,这一步都必不可少
    同学们也不要嫌麻烦,动起手来吧
    基础比较好的同学也可以温故知新,再练习一下哈

    闲言少叙,下面我们六步完成数据预处理
    其实我感觉这里少了一步:观察数据
    ![此处输入图片的描述][1]

    这是十组国籍、年龄、收入、是否已购买的数据

    有分类数据,有数值型数据,还有一些缺失值

    看起来是一个分类预测问题

    根据国籍、年龄、收入来预测是够会购买

    OK,有了大体的认识,开始表演。

    Step 1:导入库

    import numpy as np
    
    import pandas as pd
    

    Step 2:导入数据集

    dataset = pd.read_csv('Data.csv')
    
    X = dataset.iloc[ : , :-1].values
    Y = dataset.iloc[ : , 3].values
    print("X")
    print(X)
    print("Y")
    print(Y)
    

    这一步的目的是将自变量和因变量拆成一个矩阵和一个向量。
    结果如下

    X
    [['France' 44.0 72000.0]
     ['Spain' 27.0 48000.0]
     ['Germany' 30.0 54000.0]
     ['Spain' 38.0 61000.0]
     ['Germany' 40.0 nan]
     ['France' 35.0 58000.0]
     ['Spain' nan 52000.0]
     ['France' 48.0 79000.0]
     ['Germany' 50.0 83000.0]
     ['France' 37.0 67000.0]]
    Y
    ['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']
    

    Step 3:处理缺失数据

    from sklearn.preprocessing import Imputer
    imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
    imputer = imputer.fit(X[ : , 1:3])
    X[ : , 1:3] = imputer.transform(X[ : , 1:3])
    

    Imputer类具体用法移步

    http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

    本例中我们用的是均值替代法填充缺失值

    运行结果如下

    Step 3: Handling the missing data
    step2
    X
    [['France' 44.0 72000.0]
     ['Spain' 27.0 48000.0]
     ['Germany' 30.0 54000.0]
     ['Spain' 38.0 61000.0]
     ['Germany' 40.0 63777.77777777778]
     ['France' 35.0 58000.0]
     ['Spain' 38.77777777777778 52000.0]
     ['France' 48.0 79000.0]
     ['Germany' 50.0 83000.0]
     ['France' 37.0 67000.0]]
    

    Step 4:把分类数据转换为数字

    from sklearn.preprocessing import LabelEncoder, OneHotEncoder
    labelencoder_X = LabelEncoder()
    X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])
    
    onehotencoder = OneHotEncoder(categorical_features = [0])
    X = onehotencoder.fit_transform(X).toarray()
    labelencoder_Y = LabelEncoder()
    Y =  labelencoder_Y.fit_transform(Y)
    print("X")
    print(X)
    
    print("Y")
    print(Y)
    

    LabelEncoder用法请移步

    http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

    X
    [[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01
      7.20000000e+04]
     [0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01
      4.80000000e+04]
     [0.00000000e+00 1.00000000e+00 0.00000000e+00 3.00000000e+01
      5.40000000e+04]
     [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01
      6.10000000e+04]
     [0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01
      6.37777778e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01
      5.80000000e+04]
     [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01
      5.20000000e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01
      7.90000000e+04]
     [0.00000000e+00 1.00000000e+00 0.00000000e+00 5.00000000e+01
      8.30000000e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01
      6.70000000e+04]]
    Y
    [0 1 0 0 1 1 0 1 0 1]
    

    Step 5:将数据集分为训练集和测试集
    from sklearn.cross_validation import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)

    X_train
    [[0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01
      6.37777778e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01
      6.70000000e+04]
     [0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01
      4.80000000e+04]
     [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01
      5.20000000e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01
      7.90000000e+04]
     [0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01
      6.10000000e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01
      7.20000000e+04]
     [1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01
      5.80000000e+04]]
    X_test
    [[0.0e+00 1.0e+00 0.0e+00 3.0e+01 5.4e+04]
     [0.0e+00 1.0e+00 0.0e+00 5.0e+01 8.3e+04]]
    step2
    Y_train
    [1 1 1 0 1 0 0 1]
    Y_test
    [0 0]
    

    Step 6:特征缩放

    from sklearn.preprocessing import StandardScaler
    sc_X = StandardScaler()
    X_train = sc_X.fit_transform(X_train)
    X_test = sc_X.transform(X_test)
    

    大多数机器学习算法在计算中使用两个数据点之间的欧氏距离

    特征在幅度、单位和范围上很大的变化,这引起了问题

    高数值特征在距离计算中的权重大于低数值特征

    通过特征标准化或Z分数归一化来完成

    导入sklearn.preprocessing 库中的StandardScala

    用法:http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

    X_train
    [[-1.          2.64575131 -0.77459667  0.26306757  0.12381479]
     [ 1.         -0.37796447 -0.77459667 -0.25350148  0.46175632]
     [-1.         -0.37796447  1.29099445 -1.97539832 -1.53093341]
     [-1.         -0.37796447  1.29099445  0.05261351 -1.11141978]
     [ 1.         -0.37796447 -0.77459667  1.64058505  1.7202972 ]
     [-1.         -0.37796447  1.29099445 -0.0813118  -0.16751412]
     [ 1.         -0.37796447 -0.77459667  0.95182631  0.98614835]
     [ 1.         -0.37796447 -0.77459667 -0.59788085 -0.48214934]]
    X_test
    [[-1.          2.64575131 -0.77459667 -1.45882927 -0.90166297]
     [-1.          2.64575131 -0.77459667  1.98496442  2.13981082]]
    
  • 相关阅读:
    回顾C#3.0新特性(3)
    第五周作业
    第六周基础作业
    第三周syh
    基础作业
    第七周作业
    2019年春季学期第四周作业
    第八周作业
    .Net 反射
    C#中SqlParameter
  • 原文地址:https://www.cnblogs.com/jpld/p/11137405.html
Copyright © 2020-2023  润新知