Graph Coloring
Time Limit: 1000MS | Memory Limit: 10000K | |||
Total Submissions: 4926 | Accepted: 2289 | Special Judge |
Description
You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black.
Figure 1: An optimal graph with three black nodes
Figure 1: An optimal graph with three black nodes
Input
The
graph is given as a set of nodes denoted by numbers 1...n, n <= 100,
and a set of undirected edges denoted by pairs of node numbers (n1, n2),
n1 != n2. The input file contains m graphs. The number m is given on
the first line. The first line of each graph contains n and k, the
number of nodes and the number of edges, respectively. The following k
lines contain the edges given by a pair of node numbers, which are
separated by a space.
Output
The
output should consists of 2m lines, two lines for each graph found in
the input file. The first line of should contain the maximum number of
nodes that can be colored black in the graph. The second line should
contain one possible optimal coloring. It is given by the list of black
nodes, separated by a blank.
Sample Input
1 6 8 1 2 1 3 2 4 2 5 3 4 3 6 4 6 5 6
Sample Output
3 1 4 5
【分析】此题就是求最大独立集。二部图的最大独立集==顶点数-匹配数,普通图的最大独立集==补图的最大团,且此题需要输出路径,所以用最大团的模板算法较好。
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <string> #include <map> #include <queue> #include <vector> #define inf 0x7fffffff #define met(a,b) memset(a,b,sizeof a) typedef long long ll; using namespace std; const int N = 105; const int M = 25005; bool w[N][N]; bool use[N]; //进入团的标号 bool bestx[N]; int cn,bestn,p,e; void dfs(int x) { bool flag; if(x>p) { bestn=cn; //cn的值是递增的 for( int i=1;i<=p; i++) //赋值给另外一个数组, bestx[i]=use[i]; return ; } flag=true; for( int i=1; i<x; i++) if(use[i]&&!w[i][x]) { flag=false; break; } if(flag) { cn++; use[x]=true; dfs(x+1); cn--; use[x]=false;//回溯 } if(cn+p-x>bestn) { //剪枝 dfs(x+1); } } int main() { int num,u,v; scanf("%d",&num); while(num--) { memset(w,true,sizeof(w)); memset(use,false,sizeof(use)); memset(bestx,false,sizeof(bestx)); scanf("%d%d",&p,&e); for(int i=0; i<e; i++) { scanf("%d%d",&u,&v); w[u][v]=false; w[v][u]=false; } cn=bestn=0; dfs(1); printf("%d ",bestn); for (int i=1; i<=p; i++)if(bestx[i])printf("%d ",i);printf(" "); } return 0; }