• python爬取京东小爱音响评论


    import requests
    from bs4 import BeautifulSoup as bs
    import re
    import pandas as pd
    from sqlalchemy import create_engine
    from pandas.io.sql import to_sql as pd_sql
    import pymysql
    import random
    import time
    
    
    # 定义pandas存入mysql函数
    def pandas_to_mysql(df_data, table_name, **kwargs):
        engine = create_engine('mysql+pymysql://{}:{}@{}:{}/{}?charset={}'.format(kwargs['user'],kwargs['password'],kwargs['host'],kwargs['port'],kwargs['db'],kwargs['charset']))
        pd_sql(df_data, table_name, engine, index=False, if_exists='append', chunksize=10000)  # if_exists: 'replace', 'append'
        engine.dispose()
    
    
    db_local_hwdata = {'user':'root',
                        'password':'8888',
                        'port': 3306, 
                        'host':'localhost', 
                        'db': 'hwdata', 
                        'charset': 'utf8mb4'}
    
    # 设置代理池
    proxies = {
                'http':'http://120.83.110.65:9999', 
               'http':'http://183.146.156.209:9999', 
               'http':'http://123.169.34.94:9999',
               'http':'http://117.57.90.141:9999',
               'http':'http://117.69.201.19:9999',
               'http':'http://117.95.192.240:9999',
               'http':'http://117.95.192.240:9999',
               'http':'http://163.204.244.161:9999',
               'http':'http://163.204.246.168:9999',
               'http':'http://171.35.160.62:9999',
               'http':'http://36.22.77.186:9999',
               'http':'http://120.83.107.184:9999',
              }
    
    url = 'https://sclub.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv33766&productId=5239477&score=0&sortType=5&page=0&pageSize=10&isShadowSku=0&fold=1'  # 商品链接
    headers = {
        'Referer': 'https://item.jd.com/5239477.html',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36'}
    result = requests.get(url, headers=headers, proxies=proxies)
    result_text = result.text
    result_text = result_text.replace('\n', '')
    comment_number = re.search('"commentCount":([d]+),', result_text, re.S).group(1)  # 所有评论的数量,用于分页,每页评论数量为10
    
    # 遍历,10个评论一页
    for page_i in range(0, int(int(comment_number)/10)):
        time.sleep(random.uniform(0.6, 4))
        url = f'https://sclub.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv33766&productId=5239477&score=0&sortType=5&page={page_i}&pageSize=10&isShadowSku=0&fold=1'
        result = requests.get(url, headers=headers, proxies=proxies)
        result_text = result.text
        result_text = result_text.replace('\n', '')
    
        analyse_result = re.findall('"guid":"(.*?)",.*?"content":"(.*?)",.*?"creationTime":"(.*?)".*?"isDelete":(.*?),.*?"isTop":(.*?),.*?"replyCount":(.*?),.*?"score":(.*?),.*?"imageStatus":(.*?),.*?"usefulVoteCount":(.*?),.*?"userClient":(.*?),.*?"imageCount":(.*?),.*?"anonymousFlag":(.*?),.*?"plusAvailable":(.*?),.*?"productColor":"(.*?)".*?"imageIntegral".*?,(.*?)"status".*?,"referenceTime":"(.*?)".*?nickname":"(.*?)".*?"days":(.*?),.*?"afterDays":(.*?)}', result_text, re.S)
        final_data = []
        
        for rt in analyse_result:
            person_data = []
            for ch_i, character in enumerate(rt):
                if ch_i == 14 and (character != ''):
                    try:
                        character = re.search('"content":"(.*?)",', character, re.S).group(1)
                    except:
                        character = ''
                if ch_i == 18 and (int(character)< int(rt[-2])):
                    character = ''
                person_data.append(character)
            final_data.append(person_data)
        dfanalyse_result = pd.DataFrame(final_data, columns=['commentUrl', 'comment', 'commentTime', 'isDelete', 'isTop', 'replyCount', 'stars', 'imageFlag', 'voteCount', 'userClient', 'imageCount', 'anonymousFlag', 'plusFlag', 'productCatergory', 'afterComment', 'purchaseTime', 'userName', 'commentAfterBuyingTime', 'afterCommentAfterBuyingTime'])  # 将数据转换为DataFrame格式
        pandas_to_mysql(dfanalyse_result, 'w20191212jingdong_comments', **db_local_hwdata)  # 存入mysql
        print(f'page_i{page_i} finished!')

     

  • 相关阅读:
    用eclipse创建maven项目
    Maven学习 (一) 搭建Maven环境
    linux下top命令查看cpu占用情况
    Jmeter以non-gui模式进行分布式测试
    如何使用JMeter来实现更大批量的并发的解决方案(即如何设置controller和Agent)
    Linux zip解压/压缩并指定目录
    理解 JMeter 聚合报告(Aggregate Report)
    WebSocket 是什么原理?为什么可以实现持久连接
    JMeter监控服务器CPU, 内存,网络数据
    WebSocket API简介
  • 原文地址:https://www.cnblogs.com/jaysonteng/p/12702295.html
Copyright © 2020-2023  润新知